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ABSTRACT
Various software and systems engineering scenarios rely on the

systematic construction of consistent graph models. However, au-

tomatically generating a diverse set of consistent graph models

for complex domain specifications is challenging. First, the graph

generation problem must be specified with mathematical precision.

Moreover, graph generation is a computationally complex task,

which necessitates specialized logic solvers. Refinery is a novel

open-source software framework to automatically synthesize a di-
verse set of consistent domain-specific graph models. The framework

offers an expressive high-level specification language using partial
models to succinctly formulate a wide range of graph generation

challenges. Moreover, it provides a modern cloud-based architecture
for a scalable graph solver as a service, which uses logic reasoning

rules to efficiently synthesize a diverse set of solutions to graph gen-

eration problems by partial model refinement. Applications include

system-level architecture synthesis, test generation for modeling

tools or traffic scenario synthesis for autonomous vehicles.

Video demonstration: https://youtu.be/Qy_3udNsWsM
Continuously deployed at: https://refinery.services/
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1 INTRODUCTION
Motivation and challenge. Model-based systems engineering is a

popular approach in the industry for the design of critical software-

intensive cyber-physical systems [31] supported by a variety of

modeling tools (like Artop, Capella, Yakindu, OpenModelica and

many closed-source alternatives). These tools help reveal design

flaws early, thus reducing costs and improving product quality. In

this context, there is an increasing need for a diverse set of synthetic
graph models to represent test cases and benchmarks for modeling

tools or candidate designs in systems engineering. However, such

synthetic graph models need to be consistent to comply with the

underlying domain-specific standards (e.g. AUTOSAR, SysML) cap-

tured in the form of metamodels and well-formedness constraints.

However, the automated synthesis of a diverse set of consis-

tent domain-specific graph models is very challenging. (A) Random
model generators can derive large and diverse graphs, but the de-

rived graphs are not consistent. (B) Search-based model generators
[17, 24] can derive large and consistent graphs using evolution-

ary algorithms but without any guarantees for completeness or

diversity. (C) Solver-based model generators [6–8, 32] map the graph

generation problem to a SAT- or SMT-problem in the background

to detect inconsistencies of specifications, but they fail to derive a

diverse set of graphs with more than a few hundred of graph nodes.

Conceptually, a graph solver can also be regarded as an SMT-solver

for the domain of complex graph (or relational) data, but the main

focus is to derive a diverse set of consistent models (if they exist).

Objective and scope. The Refinery framework supports the effi-

cient generation of consistent and diverse domain-specific graph

models. It offers (1) a high-level specification language to capture

the domain and control the range of graphs requested by end users,

(2) a semantically well-founded graph generation approach based

on refinement of partial models using 4-valued logic, and (3) a mod-

ern cloud-based architecture that provides a partial modeling editor,

a partial model reasoner and a graph solver for engineers made

available in a web browser or programmatically as a Java library.

First, the end user needs to provide a domain specification, which
consists of a metamodel, an (optional) initial partial model, a set

of predicates and constraints and a scope definition to restrict the

size of the generated models. Then server-side automated graph
generation back-end can be initiated by a push of a button (or
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programmatically). The diverse set of auto-generated consistent

graph models can be visualized or serialized in a textual format.

A main use case of Refinery is to synthesize graphs as test cases

in applications such as the testing of modeling tools or system-

level testing of autonomous vehicles [2]. Refinery also helps ex-

perts to semi-automatically provide a variety of consistent design

candidates with complex graph structures as part of design space

exploration [14], partial modeling [5], or feature modeling [12].

Envisioned users. The Refinery framework primarily aims to tar-

get systems and software engineers to derive complex test suites for

industrial modeling tools (like Artop, Capella, Yakindu, OpenMod-

elica and many closed source alternatives). An ongoing initiative is

to provide test models for the new SysML standard [13]. However,

the modern web interface enables the use of the framework by

other domain experts, e.g. safety experts developing test scenarios

in autonomous vehicles, or Blockchain experts (see section 4). Dur-

ing the development of the framework, we have received regular

feedback from researchers at Budapest University Technology and

Economics (Hungary), McGill University (Canada) and Linköping

University (Sweden) and engineers at IncQuery Labs.

2 CONCEPTUAL OVERVIEW AND USAGE
Our framework offers a high-level specification language for model

generation using refinement of 4-valued partial models.

2.1 Specification Language
The framework provides a concise yet precise specification lan-

guage for generating graphs based on the syntax for partial models

proposed in [10]. The language allows to control the range of gen-

erated models using four kinds of language elements:

⟨problem⟩ := (⟨domain⟩|⟨assertion⟩|⟨predicate⟩|⟨scope⟩)∗
A domain specification in Refinery captures the key concepts and

relations of the domain using an essential subset of XCore [27], a

popular textual metamodeling language integrated with Eclipse

Modeling Framework [26]. In a domain specification, the user can

declare classes and associations as relational symbols (denoted by

⟨s⟩ in the grammar below), while a large set of logic constraints

imposed by the structure of the metamodel is automatically trans-

lated to assertions and predicates (including the type hierarchy,

multiplicities, and containment hierarchy, as illustrated in [10]).

⟨domain⟩ := (abstract)?class⟨s⟩(extends⟨s⟩(,⟨s⟩)∗)?{
((contains?)⟨s⟩[⟨min⟩..⟨max⟩]?⟨s⟩(opposite⟨s⟩)?) ∗ }

For example, graphs representing file structures may provide

classes such as FileSystem, File, Directory, and Symbolic Links

(SymLink). A FileSystem contains a File as a root; each Directory
contains multiple Files, and a SymLink can refer to other Files.

class FileSystem { contains File [1] root }

class File.

class Dir extends File{contains File [0..*] element}

class SymLink extends File { File [1] target }

Assertions define facts in an instance model (similarly to Prolog

or Datalog). Each assertion assigns a truth-value to a relational term
(which represents a graph node or edge).

⟨assertion⟩ := ⟨s⟩(⟨term⟩(,⟨term⟩) ∗ ):⟨truth-value⟩.

A non-annotated ⟨truth-value⟩ denotes true value assignment, and

the ! symbol denotes false value assignment. For example, one

can prescribe that a directory called resources exists in a graph,

which contains an img file and a symbolic link pointing to the

image, while one can state that the image file cannot be a Dir:

Dir(resources ). element(resources ,img).

element(resources ,link). target(link ,img).!Dir(img).

Logic predicates provide custom model views while constraints
(error patterns) allow to further restrict the range of valid graphs. A

logic predicate in Refinery declares a new n-ary relational symbol

(with header variables ⟨v⟩), and defines a constraint formulated as

a disjunction of multiple bodies (separated by the “;” character),
which are composed as a conjunction of literals (separated by the

“,” character). A literal refers to the truth-value of a symbol with

variables: by default, the literal refers to “*” denotes transitive

closure. The keyword error denotes error patterns: in a validmodel,

such predicates must be false for each node [4].

⟨predicate⟩ := (error)?pred⟨s⟩(⟨v⟩(,⟨v⟩) ∗ )<->⟨body⟩(;⟨body⟩).
⟨body⟩ := ⟨literal⟩(,⟨literal⟩)∗

⟨literal⟩ := (!)?⟨s⟩(*)?(⟨v⟩(,⟨v⟩) ∗ )

For example, we can identify self-loops with a predicate that

matches symbolic links targeting themself and forbid their occur-

rence with the error keyword. Similarly, we can ban empty direc-

tories with a predicate that matches nodes that are directories and

have no elements. Finally, we can refer to some files as important

if more different links point to them.

error pred selfLoop(s) <-> target +(s,s).

error pred emptyDir(d) <-> Dir(d), !element(d,_).

pred important(f)<->target(l1 ,f),target(l2,f),l1!=l2.

The scope controls the size of the generated models by defining

the minimum and maximum number of instances (or predicate

occurrences) of the scoped symbol with a true truth-value.

⟨scope⟩ := scope⟨s⟩=⟨min⟩..⟨max⟩(,⟨s⟩=⟨min⟩..⟨max⟩) ∗ .

One may generate models with 25 to 30 nodes, two file systems,

and at least one match for the predicate detecting important files:

scope node =0..30 , FileSystem =2, important =1..*.

2.2 Generation with 4-Valued Partial Models
Model generation can be initiated by the user (Generate button)
to derive a consistent model of the specification, if such a model

exists. Simple inconsistencies can be highlighted in Refinery by

error markers on the derived graph. To obtain a diverse set of

graphs, each newly generated graph is structurally different from

previous ones ensured by shape-based graph diversity metrics [22].

The Refinery framework uses 4-valued logic [3, 9] to explicitly

represent incomplete, partial (paracomplete) models, and to tolerate

errors and inconsistencies (paraconsistency) arising during the eval-
uation of computations over such models. 4-valued logic contains

the usual false and true truth values, the unknown value intro-

duced for uncertain (unspecified) properties, and the error value
that signals inconsistencies. The subset {false, true, unknown}
of logic values can express partial, but potentially consistent in-

formation (such as incomplete models). Conversely, the subset
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Figure 1: Example of a partial model in Refinery

{false, true, error} expresses possibly inconsistent, but complete

information (such as over-constrainted or invalid models).

The Refinery framework collects all assertions and predicates of

the problem specification, and semantically merges the information

content into a 4-valued partial model. The framework continuously

(and incrementally) checks and visualizes the problem specification,

and immediately pinpoints if there is a set of inconsistencies (e.g.

related to type errors, multiplicities).

During model generation, instance graphs are derived along

refinements of partial models [2, 20]: at each generation step, (1)

an uncertain element is selected and resolved by decision rules,

and (2) the consequences of this decision are investigated by unit

propagation rules (which also handles continuous type checking

and multiplicity validation). As Refinery supports the incremental

and partial evaluation of constraints [21], a (certain) match of an

error predicate immediately triggers backtracking, while potential

matches of error predicates provide search heuristics [18].

Figure 1 shows a partial model with inconsistent and incom-

plete values. Previously, node img was defined not to be a Dir,
while SymLink was not explicitly excluded from its type, hence the

node is marked as potential SymLink (white type label). If we now

add the assertion target(link,link), it causes an inconsistency

flagged by an occurrence of the error predicate selfLoop (see the

respective error marker in the partial model). Truth-values of other

predicates are also automatically calculated and updated in the

model: the node link is denoted as potentially important, while
no other node in the model has the potential to be important.

3 ARCHITECTURE
The architecture of the Refinery graph solver as a service is illus-
trated in Figure 2. Refinery follows a modern multi-tier software
architecture: graph generation problems are input via the frontend
web application (or a Java library), while the backend comprises

auto-scalable service deployed as containers behind a load balancer.

3.1 Frontend
Web application. A Single-Page Application (SPA) was created for

editing and visualizing partial models and initiating model gener-

ation. To provide editor support, we opted to perform the bulk of

the parsing and semantic analysis of the partial models in the back-

end in order to reuse the analyses already required by the model

generation. In particular, we display the logical consequences of the

statements in the partial model by executing propagation operations

on the backend immediately after the user edits the partial model.

The SPA establishes aWebSocket connection and sends editing

operations (text deltas) from the textual partial model editor (based
on the CodeMirror1 framework) to the backend. Features like syntax
error checking, content assist, find occurrences, semantic highlighting,
and automatic formatting are initiated via the WebSocket when the

editor is idle or upon user request.

Additionally, when the partial model description is free of syntac-

tic errors, the corresponding partial model semantics, including any
discovered (semantic) inconsistencies are obtained back from the

server. The user may apply further filtering (e.g., hide some nodes

or relations) before visualizing the model as a graph using Graphviz
and D32. When the user initiates graph generation, the generated

solution is also visualized. Subsequent generation requests return

different solutions by choosing a different random seed.
Client library. Refinery is also available as a library in the Java

programming language. Model generation tasks may be program-

matically submitted using our textual partial modeling language.

Alternatively, more direct interaction with the partial model man-

agement library and the model generator is available for more

specialized use-cases, such as iterative model generation [23].

3.2 Backend
The backend consists of three main components: the (1) partial
model editor, the (2) partial model reasoner, and the (3) graph solver
for generating consistent graph models.

Container-based packaging provides easy deployment to cloud

providers, such as AWS. Components (1)+(2) may be deployed as a

single Docker container to serve as a backend of the web-based edi-

tor, while components (1)+(2)+(3) deployed together in a container

enable model generation. In both cases, Refinery does not rely on

any other server-side state. Thus, it can be automatically scaled

behind an load balancer that can handle WebSocket connections.

A Docker image, containing (1)+(2)+(3) as amonolith is also avail-
able for local or on-premises deployments (e.g., for use-cases where

the resource limits provided by the cloud service are insufficient).

Partial model editor. The editor contains a web server to handle

incoming WebSocket connections and uses Eclipse Xtext [28] to

parse partial models and provide syntactic analysis features. Then
partial models are transformed into an internal semantic represen-

tation according to the Refinery language semantics.
In order to enable multiple concurrent users per server instance,

we implemented an optimized, WebSocket-based protocol over the

Xtext Web feature of the Xtext framework to maintain a server-side
copy of the edited partial models. This allows to substantially lower

resource utilization per user and latency on initial connection by

serving multiple users with a single backend instance.

Partial model reasoner. The core of partial model reasoning in

Refinery is an efficient model management library that enables the

compact representation of multiple versions of partial models [25]

as relational logic structures. This component can also be used as a

standalone Java library to store and query partial models.

1https://codemirror.net/
2https://graphviz.org/, https://d3js.org/
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Figure 2: Architectural overview of the Refinery graph solver as a service

Problem size Largest model
#class #ref #error #node

FileSys 4 2 0 19750

FAM 9 13 4 15750

Yakindu 11 7 8 4250

Ecore 20 33 1 2000

Social 2 4 2 230

Table 1: Largest models generated in 60 seconds

Consistency checking and refinement of partial models requires

reasoning about the type system describing the specified and un-

specified parts of graphs and the graph constraints that capture
consistency rules. To this end, we integrated an incremental graph
query engine based on Viatra Query [4] in combination with ad-

vanced approximation techniques for partial query evaluation [21].

Propagation steps are partial model refinements that encode

logical consequences of the type system and constraints. Refinery

derives a refined partial model and analyzes its consistency every

time the user edits the partial model. Numerical constraints are

handled by external solvers, including GLOP
3
for linear constraints.

Graph solver. The solver takes the initial partial model provided
by the user and generates a set of consistent graphs as output [21].

At each decision step, a new partial model is derived (as a new

exploration state) by decreasing the number of uncertain nodes and

edges in the partial model while simultaneously increasing its size.

State space exploration needs to repeatedly detect if a partial

graph has already been reached (special isomorphism detection),
and if a graph constraint is surely violated, when no consecutive

refinements will ever lead to a consistent model. We rely on graph
shapes [16] to detect isomorphic graphs and enforce diversity [22].

4 EVALUATION
Scalability evaluation. An initial evaluation of the Refinery frame-

work is provided in Table 1 across five different domains used as

case studies in previous research [2, 11, 20]. The number of classes,

associations, and constraints in each domain is listed in Table 1 to-

gether with the largest model successfully generated as follows. In

3https://developers.google.com/optimization/lp/

this initial experiment, each generation run had a 60-second timeout.
We incremented the model size by 250 until the generation for a

given size timed out five times in a row. In the case of the Social

Network domain, because of the limited size of the generated mod-

els, we increased the number of objects by 10. Finally, it is worth

pointing out that model generation runs for each of these domains

are available as part of the integration test suite of Refinery.

Theoretical properties. The Graph solver algorithm provides mul-

tiple formal guarantees [30], including correctness (a model is gen-

erated, then it satisfies the constraints) and completeness (if a model

satisfies the constraints, it will be generated eventually).

Uses cases in research and education. The development of the

Refinery framework has been supported by an Amazon Research

Award, and it has been successfully used in several practical appli-

cations, which include (1) the automated synthesis of test scenes

for autonomous vehicles, (2) generation of dependable blockchain

architectures, and (3) automated synthesis of system architectures

for early mission planning. The framework has also been used by

MSc students as part of an advanced modeling lab offered at Bu-

dapest University of Technology and Economics. Moreover, a public

tutorial of Refinery has been delivered at ASE 2023 by the authors.

Related work. There are other software tools that offer the auto-
mated synthesis of consistent graph models. Most notable examples

include Alloy [8], Sterling [29], USE [6], Pledge [1, 24], UMLtoCSP

[7], TAF [17] or VIATRA Solver [19]. However, we wish to point out

that the size of models generated by Refinery compares very favor-

ably to alternative model generation approaches (see e.g. [2, 11, 20]

for detailed measurements of other tools). Compared to our previ-

ous work [19], Refinery provides a fundamentally novel, modern

cloud-based architecture, a 4-valued partial modeling framework,

and new decision procedures for type inference and propagation.

Running example. The example is available at [15].
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