
Journal of Object Technology | RESEARCH ARTICLE

A specification language for consistent model
generation based on partial models

Kristóf Marussy∗†, Oszkár Semeráth∗†, Aren A. Babikian‡, and Dániel Varró∗ † ‡

∗MTA-BME Lendület Cyber-Physical Systems Research Groupits still , Hungary
†Budapest University of Technolgy and Economics, Dept. of Measurement and Information Systems, Hungary

‡McGill University, Dept. of Electrical and Computer Engineering, Canada

ABSTRACT Automated graph generation has become a key component in many testing and benchmarking scenarios. For
example, modeling tool qualification can be effectively supported by the direct synthesis of well-formed graph models as test
inputs, systematic testing of cyber-physical systems requires different test environment models, and different optimization and
design-space exploration approaches require the best models with respect to an objective function.
In this paper, we propose a novel specification language for partial models used in consistent graph model generation. The
language includes constructs to uniformly capture initial, intermediate and final results of the generation by combining partial
models, graph predicates and model metrics with mutual dependencies between them. The formal semantics of the language is
defined by using 4-valued Belnap-Dunn logic that explicitly marks inconsistent model elements as part of the partial model. The
use of our language is illustrated in the context of a complex case study defined by NASA researchers.

KEYWORDS Partial models, Model generation, 4-valued logic.

1. Introduction
Quality assurance of critical software-intensive systems fre-
quently relies on the automated synthesis of test data to reduce
conceptual gaps in the test cases. When testing domain-specific
modeling tools, or autonomous cyber-physical systems in model-
based systems and software engineering scenarios, test data
takes the form of typed and attributed graph models. Automated
model generators are key technologies to address the needs of
such testing scenarios.

A model generator needs to derive consistent models where
each model needs to satisfy (or deliberately violate) a set of
constraints captured in the form of OCL constraints or graph
predicates. Logic solvers (like SMT-solvers, SAT-solvers, CSP-
solvers) have been frequently providing precise foundations for
such model generators in tools like Alloy, USE, UMLtoCSP,

JOT reference format:
Kristóf Marussy, Oszkár Semeráth, Aren A. Babikian, and Dániel Varró. A
specification language for consistent model generation based on partial
models. Journal of Object Technology. Vol. 19, No. 3, 2020. Licensed
under Attribution - No Derivatives 4.0 International (CC BY-ND 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a12

Formula, etc. However, a recently emerging family of model
generators, like PLEDGE (Soltana et al. 2020) or the VIATRA
Solver (Semeráth et al. 2018), addresses the consistent model
generation challenge directly on the level of graph models by so-
phisticated search strategies (like multi-objective optimization
or SAT-solving algorithms) and powerful abstractions provided
by 3-valued partial models and partial model refinement (Varró
et al. 2018). To fine-tune the model generation process, iter-
ative and incremental approaches (Semeráth et al. 2016) are
proposed where models obtained as output in a previous run can
be used as inputs (e.g. required or forbidden model fragments)
in subsequent runs.

The vast majority of existing model generators adapted pop-
ular industrial languages and technologies (like EMF, OCL) as
their input specification. On the other hand, custom domain-
specific specification languages like Alloy have also become
popular due to its precise semantics. However, when generat-
ing models in an iterative and incremental way along partial
model refinement (Varró et al. 2018; Semeráth et al. 2018), this
enforces a black-box view on model generation where the in-
put and output models are concrete instance models, while all
intermediate steps of the generation operate on abstract partial

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a12

models as candidate solutions (some of which cannot be repre-
sented as regular instance models in EMF). Similarly, complex
rewriting techniques are necessitated to approximately evalu-
ate constraints over partial models (Semeráth & Varró 2017).
Furthermore, the development of novel algorithms became very
complicated due to the conceptual mismatch between concrete
models and partial models.

The main objective of the current paper is to provide founda-
tions for a more grey-box view of model generation by providing
a high-level language for specifying model generation problems.
The main purpose of this language is three-fold.

1. On the one hand, it should be modeling technology inde-
pendent to capture graph-based model generation prob-
lems that arise for non-EMF models (e.g. OWL ontologies,
graph databases, GraphQL and JSON data).

2. On the conceptual level, it should enable to capture par-
tial models as first-class citizens as inputs, outputs, and
the intermediate state of model generation. As such, any
intermediate result of any model generation step can be
used as-is for a subsequent model generation run, thus the
internal states of model generation can become transparent
by serializing the partial models in that format.

3. Finally, we wish to provide a mathematically precise
intermediate language for describing well-formedness
constraints and model metrics, again in a technology-
independent way. For that purpose, we propose a combined
notation influenced by logic programming and functional
programming.

The main contribution of the paper is to propose a specifica-
tion language for model generation problems that uses partial
models, graph predicates and metrics as core language elements.
A precise semantics of this core language is defined by a combi-
nation of 4-valued logic (for structural domain elements) and
abstract interpretation over intervals (for attributes). Moreover,
we also define some higher-level language elements as syntactic
sugars which are semantically mapped back to core elements.
We introduce this language on a sequence of examples for a
model generation problem introduced by researchers from the
NASA JPL in Herzig et al. (2017).

2. Case study
The design synthesis of interferometry mission (IM) architec-
tures has been introduced in (Herzig et al. 2017) as a com-
plex challenge for early mission planning for space missions
of NASA where a target architecture consists of collaborating
satellites (of different size and capabilities) and radio communi-
cation links between them. Each mission architecture contains
multiple spacecrafts that impose a challenging design task. Con-
straints and mission objectives used in the current paper were
defined by Herzig et al. (2017).

A metamodel for interferometry constellation missions is
shown in Figure 1 in an EMF notation. An Interfero-
metryMission consists of communicating CommElements,

InterferometryMission

CommunicatingElement

GroundStationNetwork

CommSubsystem

frequency : EInt
type : CommunicationType

observationTime : EInt

CommunicationType
KaComm
UHFComm
XComm

[1..1] groundStationNetwork

[2..*] spacecraft

[1..2] commSubsystem

[0..1] payload

[0..1] target

ConstellationMission

Spacecraft Payload

Interferometry

CubeSat SmallSat

CubeSat3U CubeSat6U

Payload

Figure 1 Metamodel of interferometry constellation missions.

which are equipped with CommSubsystem subsystems (i.e. an-
tennas with different communication frequencies) via their
commSubsystem references for KaComm, UHFComm and XComm
bands. Spacecraft of different sizes, including cube satel-
lites CubeSat3U and CubeSat6U, as well as small satellites
SmallSat, may carry interferometry Payloads (photo sensors),
and must be able to reach the GroundStationNetwork via ra-
dio links (to send interferometry sensor data) denoted by the
target references.

The constraints of a consistent interferometry mission archi-
tecture capture that

– each Spacecraft may only have a single transmitting
commSubsystem (the other commSubsystem, if present,
may only receive);

– all Spacecraft must have a communication path to the
GroundStationNetwork;

– there must not be any communications loops (communica-
tion paths from a CommunicatingElement to itself);

– CommunicatingElement instances may only communi-
cate if they share the same radio band (KaComm, XComm or
UHFComm) and frequency; and

– CommSubsystem instances of certain radio bands require
specific Satellite types (e.g. only SmallSat instances
can use the KaComm band).

A set of objective functions is defined in order to quantita-
tively assess each IM architecture. Such objectives include

– the cost of equipment in the constellation, including
Spacecraft, CommSubsystems and Payloads, which is
subject to economies of scale regarding multiple pieces of
equipment of the same type;

– the duration of the mission, which is characterized by the
observation time and the time required to downlink the
gathered images to the GroundStationNetwork;

– the coverage of the observation area achieved by the inter-
ferometry Payloads during the observation time.

3. Syntax of partial models
The goal of partial models is to explicitly represent uncertainty
in models by introducing a 4-valued logic representation where
a single partial model covers a set of concrete instance models.

2 Marussy et al.

Informally, a specific structural model element (i.e. a domain
object or link) can surely exist (a truth value of true), cannot
exist (a truth value of false), or it may be uncertain if the model
element exists (unspecified or unknown). The latter is signified
by the unknown truth value (Kleene et al. 1952) in accordance
with Reps et al. (2004); Varró et al. (2018); Semeráth & Varró
(2017). If a model element is inconsistent, then a special error
value is assigned to it (Marussy et al. 2018). Moreover, data
objects can be used as attribute values to represent quantitative
information. The core constructs of our specification language
enable capturing such partial models.

Informally, our specification language allows to define graph-
based partial models by using assertions where an assertion may
state what is true, what is false or what is unknown related to the
model. Well-formedness constraints of a domain can be defined
by predicates in a Prolog-style language. Furthermore, graph
metrics (e.g. objective functions, model metrics) can also be
defined in combination with predicates in the style of functional
programming languages (e.g. Erlang or ML).

3.1. Core syntax for partial models
3.1.1. Language literals The partial modeling language
includes the following literals: ⟨id⟩ defines identifiers in the
model, ⟨integer⟩ and ⟨real⟩ defines numbers, and ⟨string⟩ de-
fines strings of characters with escape symbol. In general, this
follows a notation similar to programming languages like Java.

⟨id-fragment⟩ ::= (a · · · z | A · · · Z | _)
(a · · · z | A · · · Z | _ | 0 · · · 9)∗

⟨id⟩ ::= ⟨id-fragment⟩ (::⟨id-fragment⟩)∗

⟨integer⟩ ::= (-)? (0 · · · 9)+

⟨real⟩ ::= (-)? (0 · · · 9)+ (.(0 · · · 9)+)?

Example 3.1. Spacecraft and Spacecraft::new are identi-
fiers, 3000 is an integer and 2.71828 is a real number.

3.1.2. Objects: domain/data, named/unnamed A partial
model describes partial models with objects and relations be-
tween them. Objects include primitive data objects (e.g. integer
and real numbers) or non-primitive domain objects. In either
case, an object is either named or unnamed. A named object
can be differentiated from the other named objects by using an
identifier, while unnamed objects do not have designated iden-
tities. As such, replacing a named object with another object
results in a different partial model, while replacing an unnamed
object with another (otherwise identical) unnamed object will
not change the partial model.

⟨object-id⟩ ::= ⟨named-obj-id⟩ | ⟨unnamed-obj-id⟩

⟨named-obj-id⟩ ::= '⟨char⟩+'

⟨unnamed-obj-id⟩ ::= ⟨id⟩

Example 3.2. Figure 2 shows a partial model using graphical
notation. Types (unary predicates) are written inside the boxes
for the objects (? stands for uncertain types). Edges (binary
predicates) are depicted as arrows (dashed arrows stand for un-
certain edges and thick arrows stand for containment relations).
The special ∼ edge denotes object equality.

'gsc'
CommSubsystem

i1: [3000, 3000]
int

o3
?CommSubsystem

i2: [3000, +inf]
int

'KaComm'
CommunicationType

'UHFComm'
CommunicationType

'XComm'
CommunicationType

CommSubsystem::new
CommSubsystem

int::new: [-inf, +inf]
int

o2
CubeSat3U
CubeSat
Spacecraft
CommunicatingElement

'gs'
GroundStationNetwork
CommunicatingElement

o1
InterferometryMission
ConstellationMission

i3: [1, 5]
int

frequency

target
target

frequency

~

type
type type

type

target

target

~

type

type type

frequency

~

~
~

commSubsystem commSubsystemcommSubsystem

spacecraft

groundStationNetwork

observationTime

Figure 2 Graphical representation of a partial model.

The named object 'gsc' represents a special antenna from
a GroundStation named 'gs', and o3 is an unnamed object
representing another antenna. Here, a named object is used
for 'gsc' to differentiate its role from other antennas. The
partial model lists three possible CommunicationType con-
stants (based on the enumerated type in Figure 1) with named
objects 'KaComm', 'UHFComm', and 'XComm'. Here, we used
named objects for all enumeration constants as we want to keep
the identity of each type (i.e. it matters whether 'gsc' has
type 'KaComm' or 'UHFComm'). Figure 2 also depicts two data
objects i1 and i2 that represent in the model (describing fre-
quencies). Finally, the object CommSubsystem::new by itself
represents all the potential new CommSubsystem objects and
int::new represents all the integer data objects that may be
added to the model.

3.1.3. Relation assertions Using the core syntax, a partial
model is defined with relation and value assertions over the
objects. Relation assertion defines a 4-valued truth-value (one
of true, false, unknown and error) for an n-ary relation for
a tuple of objects. Besides the usual truth values true and
false, unknown represents that the given information is not
specified in the model (thus it can be either true or false in
generated models), while error represent inconsistent infor-
mation (i.e. true and false at the same time). From a model
generation perspective, a partial model with any unknown val-
ues means that the model is not yet finished (i.e. it is not yet
a regular concrete model), while any error value makes the
model inconsistent, thus no consistent instance models can be
generated by model refinement from the partial model.

⟨assertion⟩ ::= ⟨ground-rel-use⟩: ⟨logic-value⟩.
▷ relation assertion

⟨ground-rel-use⟩ ::=
⟨relation-id⟩((⟨ground-term⟩(, ⟨ground-term⟩)∗)?)

▷ relation atom with ground arguments

⟨ground-term⟩ ::= ⟨object-id⟩ ▷ partial model node

A specification language for consistent model generation based on partial models 3

⟨logic-value⟩ ::= true | false | unknown | error
▷ 4-valued logic values

Combined with named and unnamed objects, unary relations
are sufficiently expressive to uniformly represent simple node
labels, more complex type systems, enumerated types, and
primitive types (like integers).
Example 3.3. The following code excerpt shows some unary
relation assertions from the partial model in Figure 2.

1 CommSubsystem('gsc'): true.
2 Spacecraft('gsc'): false.
3 Payload('gsc'): false. % ...
4 CubeSat3U(o3): true.
5 CubeSat(o3): true.
6 Spacecraft(o3): true.
7 CommunicatingElement(o3): true.
8 CommType('KaComm '): true.
9 CommType('UHFComm '): true.

10 CommType('XComm '): true.
11 int(i1): true. int(i2): true.
12 int(int::new): true.

Lines 1–3 of the example denote that it is true that the object
'gsc' has the type CommSubsystem, but it does not have other
types like Spacecraft and Payload. Complex type systems
can be formalized by listing the combination of all type pred-
icates. For example, the types of the object o3 are listed in
lines 4–7. An enumerated type can be formalized by listing
all instances (like in lines 8–10), and specifying that all other
objects does not have that type. Finally, primitive data objects
are also represented by type predicates, like in lines 11–12.

Binary relation assertions can represent a wide range of
structures like references (links, edges) and attributes.
Example 3.4. In Figure 2, communication paths between the
satellites are represented by the target relation.

1 target('gsc', o3): true.
2 target(o3, 'gsc'): unknown.
3 target('gsc', 'gsc'): false.

In the partial model, it is known that object 'gsc' is communi-
cating with object o3 (denoted with solid edges in Figure 2 and
target('gsc', o3): true in line 1). Potential communica-
tion relations are denoted with unknown values, e.g. in line 2,
the target link between o3 and 'gsc' is unknown. Finally, a
partial model can represent the absence of a relation with the
truth value false, e.g. in line 3.

3.1.4. Exists and equals A partial model uses two special
relations: the unary relation exists assigns a truth-value for
the existence of an object, while the binary relation equals
assigns a truth-value for the equivalence of two objects. These
special relations can also take unknown truth values to represent
abstract graph structures.
Example 3.5. The following lines illustrate different combina-
tions of exists and equals from Figure 2.

1 exists(o3): true. equals(o3, o3): true.
2 equals(o1, o3): false. equals(o2, o3): false.
3 exists(CommSubsystem ::new): unknown.
4 equals(CommSubsystem ::new , CommSubsystem ::new):

unknown.
5 equals(i1, i2): unknown. equals(i2 , i3): unknown.
6 equals(i1, i3): unknown.

Lines 1–2 show a concrete object o3 which is existing, and
it is equal to itself and different from others. Next, lines 3–4
show a multi-object CommSubsystem::new that may or may
not exist (i.e. 0.. multiplicity) and its unknown equivalence
with itself denotes that the object may represent multiple dif-
ferent objects (i.e. ..* multiplicity). Finally, lines 5–6 represent
the uncertain equivalence of the three integers i1, i2 and i3.
These data objects may possibly be merged with each other.

3.1.5. Value assertions In a concrete model, each data
object (e.g. integer) has a concrete value defined by a single
assignment. However, in a partial model, the value of a data ob-
ject is defined by one or more closed interval assertions, where
an interval can possibly be empty or infinite (inf). If several
of such assertions exist, then the intersection (conjunction) of
such intervals is taken.

⟨assertion⟩ ::= · · · | ⟨ground-term⟩: ⟨interval⟩.
▷ value assertion

⟨interval⟩ ::= [⟨lower-bound⟩, ⟨upper-bound⟩]
▷ non-empty interval literal

| empty ▷ empty interval literal

⟨lower-bound⟩ ::= ⟨real⟩ | -inf ▷ finite or infinite lower bound

⟨upper-bound⟩ ::= ⟨real⟩ | +inf ▷ finite or infinite upper bound

Example 3.6. The partial model in Figure 2 illustrates three int
objects. The value of i1 is set to 3000, which is defined by the
interval [3000, 3000]. For i2 we define only that the value
is greater than or equal to 3000, thus we use interval [3000,
+inf]. Finally, by setting an interval of int::new we define
the potential range of all the new integers.

1 i1: [3000, 3000]. i2: [3000 , +inf].
2 int::new: [−inf , +inf].

3.2. Syntactic sugar for partial models
Since partial models can be defined by the users as an initial
input (seed) model, we also provide a simplified notation with
syntactic shortcuts for the most frequently used constructs.

3.2.1. Simplified assertions First, relation assertions can
be simplified with the prefixes ? and !, where ? stands for
the truth-value unknown, ! stands for the truth-value false
and the lack of a prefix stands for true. Shortcuts can also
be introduced for data objects by referring to them with their
value. As a result, relations in partial models can be defined
by Prolog-style clauses while still keeping the option of using
many-valued logic and abstract domains.

⟨assertion⟩ ::= · · · | (? | !)? ⟨ground-rel-use⟩.
▷ brief relation assertion

⟨ground-term⟩ ::= · · · | ⟨int⟩ | ⟨real⟩ | ⟨interval⟩
▷ integer, real or interval literal

Translations of the constructs defined above to the core syn-
tax are shown in Table 1.

4 Marussy et al.

Original Translated

⟨ground-rel-use⟩. ⟨ground-rel-use⟩: true.

!⟨ground-rel-use⟩. ⟨ground-rel-use⟩: false.

?⟨ground-rel-use⟩. ⟨ground-rel-use⟩: unknown.

(⟨int⟩) int(literals::⟨id⟩).
literals::⟨id⟩: ⟨int⟩.

(⟨real⟩) real(literals::⟨id⟩).
literals::⟨id⟩: ⟨real⟩.

(⟨interval⟩) literals::⟨id⟩: ⟨interval⟩.

Table 1 Translations for brief relation assertions.

Original Translated

(*) the containing statement is copied
for all possible objects

default ⟨assertion⟩ ⟨assertion⟩ if no other logic value
was defined previously

Table 2 Translations for any and default assertions.

Example 3.7. Lines 1–3 of the following code excerpt show
three examples for a positive, negative and uncertain assertions,
respectively. Line 4 uses 3000 as a data object with the constant
value 3000, while line 5 uses the interval [3000, +inf].

1 target('gsc',o3).
2 !target('gsc','gsc').
3 ?target(o3,'gsc').
4 frequency('gsc', 3000).
5 frequency(o3, [3000 , +inf]).

3.2.2. Any and default The complete definition of a par-
tial model needs to assert truth values for all relations. This
would require a large number of assertions, which is impractical.
Therefore, we introduce two mechanisms to assert truth-values
over a range of objects. First, assertions can be expressed for
any object using the symbol *.

Additionally, missing truth values of relations can be as-
serted by using the default keyword. This allows discharging
with the assumption that everything unspecified is unknown (i.e.
open-world semantics). For example, we can avoid explicitly
enumerating the types an object does not have by setting the
default logic value for each type to false((i.e. closed-world
semantics). Conversely, setting default to error means every
possible value of the relation must be explicitly enumerated,
even unknown values.

⟨ground-term⟩ ::= · · · | * ▷ all partial model nodes

⟨default-assertion⟩ ::= default ⟨assertion⟩

Table 2 shows the translations for these constructs.

Example 3.8. By defining the default value of Comm-
Subsystem as false in line 1, we may omit the statement

CommSubsystem(o1): false. However, logic values differ-
ing from false must be state explicitly.

1 default CommSubsystem (∗): false.
2 CommSubsystem('gsc').
3 ?CommSubsystem(o3).

4. Graph predicates and metrics
Building on the core notions for describing partial models
from section 3, in this section, we will introduce graph predi-
cates and metrics. Graph predicates capture derived relations
and well-formedness constraints, while metrics allow numerical
computations, including constraints on numerical values, as
well as objective functions such as model size and cost.

4.1. Graph predicates
We partition relation symbols (i.e. ⟨relation-id⟩) into base rela-
tion symbols and defined predicate symbols.

The base relations include built-in relations, such as int and
real, as well as any types, references and attributes that com-
prise the model. Any relation symbol appearing in the partial
model without an associated predicate definition is considered
to be a base relation symbol. The truth values of these relations
can be specified arbitrarily by assertions.

In contrast, one may create defined predicate symbols by
predicate defintions. The body of the definition may be evalu-
ated on the model to compute a logic values. Thus assertions
involving defined predicate symbols are constraints on the com-
puted logic values. In the following, we will discuss the syntax
of predicate definitions.

4.1.1. Predicate definitions Predicate definitions specify
queries (or constraints) as Datalog-like expressions over relation
symbols. The name and parameters of the predicate are sepa-
rated by the := symbol from the body of the predicate definition.
The body is specified in a disjunctive normal form. Literals in
the body of predicate definition may refer to (n-ary) relation
symbols, including both defined (interpreted) predicate sym-
bols and base (uninterpreted) relation symbols, metric checking
literals (to check whether the value of a metric lies within an
interval using the in operator), the transitive closures of binary
relations, as well as negations thereof. However, as a specific
limitation, recursive definitions (when a predicate definition
refers to itself directly or indirectly via relations and metric use)
are disallowed.

When using relations (and metrics) in predicate definitions,
only variables (e.g. x) are allowed as arguments. Variables in a
body of a predicate that do not appear in the parameter list of the
predicate definition are implicitly considered to be existentially
quantified. As an exception, for variables that solely appear in a
single negative literal, the existential quantifier is moved inside
the negation in order to match the quantification semantics of
the VIATRA query language (Varró et al. 2016).

⟨predicate-def ⟩ ::= ⟨pred-def-core⟩
▷ basic form of predicate definition without any modifiers

⟨pred-def-core⟩ ::=
⟨predicate-id⟩((⟨param⟩(, ⟨param⟩)∗)?) :- ⟨disjunction⟩.

A specification language for consistent model generation based on partial models 5

⟨param⟩ ::= ⟨var-id⟩ ▷ parameter variable

⟨disjunction⟩ ::= ⟨conjunction⟩ (; ⟨conjunction⟩)∗

⟨conjunction⟩ ::= ⟨literal⟩ (, ⟨literal⟩)∗

⟨literal⟩ ::= ⟨atom⟩ ▷ positive atom

| !⟨atom⟩ ▷ negative atom

⟨atom⟩ ::= ⟨logic-value⟩ ▷ 4-valued logic constant

| ⟨relation-use⟩ ▷ relation application

| ⟨relation-id⟩+(⟨term⟩, ⟨term⟩)
▷ transitive closure

| ⟨relation-id⟩*(⟨term⟩, ⟨term⟩)
▷ reflexive transitive closure

| ⟨metric-use⟩ in ⟨interval⟩ ▷ metric check

| ⟨term⟩ == ⟨named-object-id⟩ ▷ find by name

⟨relation-use⟩ ::= ⟨relation-id⟩((⟨term⟩(, ⟨term⟩)∗)?)

⟨metric-use⟩ ::= ⟨metric-id⟩((⟨term⟩(, ⟨term⟩)∗)?)

Example 4.1. Consider the following two predicate definitions:

1 directCommunicationLink(from , to) :−
2 Spacecraft(from), CommunicatingElement(to),
3 commSubsystem(from , fromComm),
4 target(fromComm , toComm),
5 commSubsystem(to, toComm).
6 noLinkToGroundStation(s) :−
7 Spacecraft(s), g == 'gs',
8 !directCommunicationLink +(s, g).

The binary predicate directCommunicationLink matches
pairs of Spacecraft objects from and CommunicatingEle-
ment objects to such that there is a direct communication
path between the antennas of the two elements. The variables
fromComm and toComm of the antennas are (implicitly) existen-
tially quantified.

The noLinkToGroundStation selects Spacecraft ob-
jects where there is no indirect communication path to the
named 'gs' object, where indirect paths are defined as the
transitive closure of the directCommunicationLink relation.

4.1.2. Combining metrics and predicates As a special
feature of our language, metrics (see subsection 4.2) and graph
predicates can mutually depend on each other. On the one hand,
a predicate can check if the value calculated by a metric is
within a specific interval (metric value check atom). Reversely,
predicates can serve as conditions in aggregation expressions
(e.g. to count the number of matches of a predicate) and in
conditionals.

4.1.3. Type annotations In addition to the core syntax
above, several language constructs help define predicates as
syntactic sugar. Firstly, unary predicates may appear as type
annotations in parameter. For each type annotation, a call to the
predicate used as type is added to each disjunctive case of the
predicate body, which results in a notation reminiscent of typed
object-oriented programming languages.

⟨param⟩ ::= · · · | ⟨relation-id⟩ ⟨var-id⟩ ▷ typed parameter

Example 4.2. Predicate definition directCommunication-
Link from the previous example can be more succinctly written
as follows (where Spacecraft and CommunicatingElement
are introduced as types):

1 directCommunicationLink(Spacecraft from ,
2 CommunicatingElement to) :−
3 commSubsystem(from , fromComm),
4 target(fromComm , toComm),
5 commSubsystem(to, toComm).

4.1.4. Error predicates The error keyword may be used
to introduce error predicates, which should never hold in a con-
sistent model. This is equivalent to asserting that the predicate
is false everywhere in the model.

⟨predicate-def ⟩ ::= · · · | error ⟨pred-def-core⟩
▷ error predicate definition

Example 4.3. To designate noLinkToGroundStation as an
error predicate, one may define it as

1 error noLinkToGroundStation(s) :−
2 Spacecraft(s), g == 'gs',
3 !directCommunicationLink +(s, g).

which is equivalent to define noLinkToGroundStation with-
out the error keyword and asserting that

1 noLinkToGroundStation (∗): false.

For convenience, we also allow error predicates without a
predicate name. These definitions are filled in with a newly
generated, unique name before translation into assertions.

⟨unnamed-err⟩ ::=
error((⟨param⟩(, ⟨param⟩)∗)?) :- ⟨disjunction⟩.

▷ unnamed error predicate definition

Example 4.4. The unnamed error predicate definition

1 error(s) :− Spacecraft(s),
2 g == 'gs', !directCommunicationLink +(s, g).

is equivalent to a definition with a generated unique name

1 error unnamed0001(s) :− Spacecraft(s),
2 g == 'gs', !directCommunicationLink +(s, g).

4.1.5. Functional predicates We introduce the
functional keyword to express that the last parameter
of an n-ary relation (n ≥ 2) is functionally dependent on its
previous parameters, i.e. for any possible binding of the first
n − 1 parameters, there is at most only a single possible value
for the nth parameter for which the predicate evaluates to
true in a consistent model. This is achieved by automatically
adding a new error predicate for each functional predicate
definition. A (base) relation may be marked as functional to
imply the same kind of constraint. In that case, the definition of
the predicate is omitted, only writing the functional keyword
and the name of the (base) relation.

⟨predicate-def ⟩ ::= · · · | functional ⟨pred-def-core⟩
▷ functional predicate definition

⟨functional-decl⟩ ::= functional ⟨base-relation-id⟩.
▷ functional base relation declaration

6 Marussy et al.

Original Translated

m() =:= ⟨real⟩ m() in [⟨real⟩, ⟨real⟩]

m() =!= ⟨real⟩ !(m() in [⟨real⟩, ⟨real⟩])

m() <= ⟨real⟩ m() in [-inf, ⟨real⟩]

m() < ⟨real⟩ !(m() in [⟨real⟩, +inf])

m() >= ⟨real⟩ m() in [⟨real⟩, +inf]

m() > ⟨real⟩ !(m() in [-inf, ⟨real⟩])

Table 3 Translations of comparison operators.

Example 4.5. When one designates directCommunication-
Link as functional by writing

1 functional directCommunicationLink(
2 Spacecraft from ,
3 CommunicatingElement to) :−
4 commSubsystem(from , fromComm),
5 target(fromComm , toComm),
6 commSubsystem(to, toComm).

then each from object may have at most one to object associ-
ated with it. Thus the following error definition is generated:

1 error directCommunicationLinkNotFunctional(
2 Spacecraft from) :−
3 !equals(to1 , to2),
4 directCommunicationLink(from , to1),
5 directCommunicationLink(from , to2).

4.1.6. Comparison operators We allow comparison oper-
ators in addition to the in keyword in expressions checking the
value of a metric.

⟨atom⟩ ::= · · · | ⟨metric-use⟩ ⟨comp-op⟩ ⟨real⟩
▷ comparison of metric value

⟨comp-op⟩ ::= =:= | =!= | <= | < | >= | >

The comparisons can be readily translated back into a check
expression with the in keyword as shown in Table 3.

4.2. Model metrics
Analogously to predicate definitions that allow computing logic
values from (partial) models, we introduce metric definitions to
compute numerical values.

4.2.1. Metric definitions Metric definitions are structured
similarly to predicate definitions (using the := operator instead
of the :- operator). The body of the metric definition is a metric
expression. Basic elements of metric expressions include nu-
merical constants, terms referencing parameters, other variables
or named objects, applications of other metrics, as well as ele-
mentary algebraic operators. While we currently only specify a
small set of elementary operators (addition, subtraction, multi-
plication, division, exponentiation and the floor function), the
language is easily extensible with additional operators (e.g. log-
arithms). Similarly to predicate definitions, direct or indirect
recursion between metric definitions is not allowed.

Evaluation of the metric expression may fail with a non-
number result if an illegal operation, e.g. division by zero is
performed. Otherwise, the result of the expression evaluation
will be the value of the defined metric. When a term (variable
or named object) appears in a metric expression, it must refer to
a data node in the graphs and will evaluate to the numeric value
bound to the data node. Plain terms not referring to data nodes
cause expression evaluation to fail. In contrast with predicate
definitions, metric definitions do not quantify over their free
variable existentially.

⟨metric-def ⟩ ::=
⟨metric-id⟩((⟨param⟩(, ⟨param⟩)∗)?) := ⟨metric-expr⟩.

▷ metric definition

⟨metric-expr⟩ ::= ⟨real⟩ ▷ number literal

| ⟨term⟩ ▷ value of data node

| ⟨metric-use⟩ ▷ metric application

| ⟨unary-op⟩ ⟨metric-expr⟩ ▷ unary operation

| ⟨metric-expr⟩ ⟨binary-op⟩ ⟨metric-expr⟩
▷ binary operation

| ⟨metric-expr⟩ as int ▷ cast (floor function)

| (⟨metric-expr⟩) ▷ parenthesized expression

⟨binary-op⟩ ::= + | - | * | / | ^

⟨unary-op⟩ ::= + | -

Interaction between metrics and relations is provided by
conditional, switch and aggregate expressions, which allow the
value of a metric to be determined by the values of base relations
or defined predicates.

4.2.2. Conditionals and switch expressions A condi-
tional (if) expression contains a single relation use as its condi-
tion. If the condition evaluates to true, the metric expression in
the then branch is evaluated, else the else branch is evaluated.

⟨metric-expr⟩ ::= · · · | if ⟨relation-use⟩ then ⟨metric-expr⟩
else ⟨metric-expr⟩

▷ conditonal expression

A switch expression contains multiple relation applications
as conditions. If exactly one condition evaluates to true and the
rest are false, the corresponding metric expression (separated
from the condition by the -> operator) is evaluated. Otherwise,
the switch expression will fail.

⟨metric-expr⟩ ::= · · · | ⟨relation-use⟩ -> ⟨metric-expr⟩
(; ⟨relation-use⟩ -> ⟨metric-expr⟩)∗

▷ switch expression

4.2.3. Aggregations Aggregation operators allow aggregat-
ing the values of metrics over relations. The aggregation is
formed by selecting a metric to be aggregated and using a rela-
tion serving as the condition. One can introduce new (unbound)
variables for a metric expression only in such relation uses. For
each binding of the fresh variables in the condition that evaluate
it to true, the metric expression is evaluated and the results are
aggregated.

A specification language for consistent model generation based on partial models 7

The sum, min and max aggregations operators take the sum,
minimum and maximum of the aggregated values, respectively.
The single operation is special: if exactly one value is ag-
gregated, i.e. the condition evaluates to true for exactly one
variable binding, it returns the single value of the aggregated
metric expression. However, if there are zero or too many val-
ues to aggregate, the evaluation fails. This allows traversing the
model along functional dependencies to extract values from data
objects, which mimics navigating along relations and attributes
in OCL.

⟨metric-expr⟩ ::= · · ·

| ⟨aggr-op⟩ { ⟨metric-use⟩ | ⟨relation-use⟩ }
▷ aggregation expression

⟨aggr-op⟩ ::= sum | min | max | single

4.2.4. Metric assertions Similarly to relation and object
value assertions, a partial model may specify the values of
metric by metric assertions. In a partial model, the value of the
metric is an interval. In each concrete model, the value of the
metric must lie in the interval specified in the partial model.

⟨assertion⟩ ::= · · · | ⟨ground-metr-use⟩: ⟨interval⟩.
▷ metric assertion

⟨ground-metr-use⟩ ::=
⟨metrc-id⟩((⟨ground-term⟩(, ⟨ground-term⟩)∗)?)

▷ metric atom with ground arguments

Example 4.6. The following metrics are an excerpt from the
calculation of the costs of an InterferometryMission:

1 missionCost(m) :=
2 sum { spacecraftCost(s) | spacecraft(m, s) }
3 + 100000.0 ∗ single { t |
4 observationTime(m, t) }.
5 spacecraftCost(s) :=
6 basePrice(s) ∗ (kindCount(s) ^ (−0.25)) +
7 payloadCost(s) + commSubsysCost(s).
8 kindCount(s) :=
9 CubeSat3U(s) −> sum { 1 | CubeSat3U(_s2) }

10 ; CubeSat6U(s) −> sum { 1 | CubeSat6U(_s2) }
11 ; SmallSat(s) −> sum { 1 | SmallSat(_s2) }.
12 missionCost(o1): [0.0, 50000000.0].

In lines 1–4, the missionCost metric describes the overall cost
of the mission, which is the sum of the individual costs of the
spacecraft connected to it via the spacecraft relation, plus
$100,000 per each hour of observation. The time of observation
is the value bound to the single data object associated to the
mission m via the observationTime relation.

In lines 5–7, spacecraftCost calculates the costs associ-
ated with a satellite s, which is comprised of the unit cost, the
cost of the payload and the cost of the associated communi-
cations subsystems. Thanks to economies of scale, the unit
cost decreases as the number of spacecraft of the same kind
is increased. Subsequent calculations except kindCount were
omitted from the code example for brevity.

In line 8–11, kindCount calculates the number of spacecraft
of the same kind as s. This is achieved by a switch expression,
which finds the type of the spacecraft, and aggregation expres-
sions, which count spacecraft of a given type.

Lastly, line 12 contains an assertion, which restricts the
InteferometryMission o1 to be no more expensive than
$50,000,000.

4.2.5. Syntactic sugar for defining metrics Several syn-
tactic shortcuts are provided for defining metrics. First, unary
relations can be placed before parameter names to serve as type
predicates, similarly to predicate definitions. This is equivalent
to introducing a switch expression with a single case, and en-
sures that the evaluation of the metric fails if the parameter does
not satisfy the given relation.

Example 4.7. To restrict the domain of spacecraftCost to
Spacecraft objects, we may write

1 spacecraftCost(Spacecraft s) :=
2 basePrice(s) ∗ (kindCount(s) ^ (−0.25)) +
3 payloadCost(s) + commSubsysCost(s).

which is equivalent to

1 spacecraftCost(s) := Spacecraft(s) −>
2 basePrice(s) ∗ (kindCount(s) ^ (−0.25) +
3 payloadCost(s) + commSubsysCost(s)).

Moreover, we introduce a dedicated operator count to count
objects satisfying some relations. This replaces the summation
of constant 1 values to enhance readability.

⟨metric-expr⟩ ::= · · · | count { ⟨relation-use⟩ }
▷ count aggregation expression

Example 4.8. With the count operator, kindCount can be
more concisely written as

1 kindCount(s) :=
2 CubeSat3U(s) −> count { CubeSat3U(_s2) }
3 ; CubeSat6U(s) −> count { CubeSat6U(_s2) }
4 ; SmallSat(s) −> count { SmallSat(_s2) }.

Lastly, there is a shorthand for the joint use of functional
relations and the single aggregation operator. Relation sym-
bols that are functional can be used as if they were met-
rics by omitting their last argument. The value of the expres-
sion is the value bound to the data object appearing as the
single possible value of the omitted argument such that the
relation evaluates to true. In other words, we may write
single { mn | ⟨relation-id⟩(m1, · · · , mn−1, mn) } as
⟨relation-id⟩(m1, · · · , mn−1) instead. This allows mimick-
ing object-oriented programming languages more closely, where
values of attributes (here represented as functional binary re-
lations) can be accessed directly from objects.

⟨metric-expr⟩ ::= · · · | ⟨relation-use⟩ ▷ functional application

Example 4.9. Because observationTime is a functional rela-
tion, the missionCost metric can access its value directly:

1 missionCost(m) :=
2 sum { spacecraftCost(s) | spacecraft(m, s) }
3 + 100000.0 ∗ observationTime(m).

8 Marussy et al.

4.3. Scopes
Scope constraints are used to restrict the number of objects
represented by multi-objects in a model. While scopes can be
expressed with metrics using the count operator, we provide a
dedicated facility for scope definitions to separate this concern
from the rest of the partial model.

Scope definitions refer to an unary relation acting as a type
predicate. They may specify lower or upper bounds or the exact
number of objects satisfying the type predicate. In contrast with
other model generators, such as Alloy (D. Jackson 2002), there
are no restrictions on the unary relations for which scopes can be
defined. In particular, they may be arbitrarily overlapping. How-
ever, contradictory scope constants, just like contradictory error
predicates, lead to partials models without any corresponding
consistent concrete model.

⟨scope-decl⟩ ::= scope ⟨relation-id⟩ ⟨comp-op⟩ ⟨int⟩.
▷ scope declaration

Example 4.10. The following scope constraints specify that the
model should contain between 16 and 32 domain objects, while
exactly 12 objects should be Spacecraft instances.

1 scope domain >= 16.
2 scope domain <= 32.
3 scope Spacecraft =:= 12.

Without using the notation for scopes, this could have alterna-
tively been written as

1 numberOfDomainObjects () := count { domain(_o) }.
2 numberOfDomainObjects (): [16, 32].
3 numberOfSpacecraft () := count { Spacecraft(_s) }.
4 numberOfSpacecraft (): [12, 12].

4.4. Containment hierarchy
Containment constraints often occur in industrial model-
ing environments such as UML (Rumbaugh et al. 2004),
SysML (Friedenthal et al. 2008) and EMF (“Eclipse Model-
ing Framework” 2019). While containment constraints can be
specified as error predicates or as assertions, we provide a
language-level facility to enable an easy definition. The advan-
tages of this approach are twofold:

– Handwritten containment constraints as predicate defini-
tion can frequently grow very large due to the need to
specify all containment relations in one place.

– Model generators can leverage explicitly signaled contain-
ment information to increase their efficiency.

Binary base relations can be designated as containment re-
lations using the containment keyword. Unary base relations
can be designated as containment roots using the root keyword.

⟨containment-decl⟩ ::= containment ⟨base-relation-id⟩.
▷ containment relation declaration

⟨root-decl⟩ ::= root ⟨base-relation-id⟩.
▷ root relation declaration

To satisfy the containment hierarchy constraint in a con-
crete model, for every object o exactly one of the following
constraints must hold:

– o is a data object.
– o has a unary base predicate marked as a root that evaluates

to true (i.e. t is a root object).
– relation(c, o) evaluates to true for exactly one
containment relation relation and object c.

Additionally, the containment relations must span a forest,
i.e. there may be no loops along containment relations.

Example 4.11. Consider the root and containment declarations

1 root ConstellationMission.
2 containment spacecraft.
3 containment commSubsystem.

Each object must either be a data object, a root object, or be con-
nected to some other (containing) object with a spacecraft
or a commSubsystem reference. In addition, spacecraft and
commSubsystem references jointly form a forest. We can alter-
natively write this as error patterns as follows:

1 containmentRelation(c, o) :−
2 spacecraft(c, o); commSubsystem(c, o).
3 error cyclicContainment(o) :−
4 containmentRelation +(o, o).
5 numberOfContainers(o) :=
6 count { spacecraft(_c, o) } +
7 count { commSubsystem(_c , o) }.
8 rootRelation(o) :− ConstellationMission(o).
9 containedObject(o) :−

10 domain(o), !rootRelation(o).
11 error wrongNumberOfContainers(o) :−
12 containedObject(o),
13 numberOfContainers(o) =!= 1
14 ; !containedObject(o),
15 containmentRelation(_c , o).

Lines 1–2 define the predicate containmentRelation,
which matches pairs of objects in any containment rela-
tions. The error predicate cyclicContainment in lines 3–4
asserts that cycles in this relation are an error, i.e. contain-
ment edges form a forest. Lines 5–7 count a the number of
containers than an object o has. Note that instead of count-
ing containmentRelation edges, we sum the counts of the
different containment relations. This allows detecting paral-
lel edges (of different containment relations) multiple times,
which are erroneous. In line 9–10, the containedObject
predicate matches the objects which need exactly one adja-
cent containment edge. Any other objects must not have a
container. This constraint is formalized by the wrongNumber-
OfContainers error predicate in lines 11–15.

5. Mapping from domain-specific modeling
technologies

Most existing model generators rely upon popular modeling
technologies to define the core domain concepts in the form
of a metamodel. To illustrate the power of abstractions in our
specification language, we demonstrate how the concrete syntax
of Xcore (“Xcore” 2020) can be mapped into partial models.

Xcore introduces a type system for models described with
a class hierarchy, denoting the generalization relation with
extends keyword and selecting classes that does not have direct
instances with the abstract keyword. The class hierarchy is

A specification language for consistent model generation based on partial models 9

Original Translated

abstract class ⟨relation-id⟩ { · · · } Abstract classes do not have to be translated explicitly.

class ⟨relation-id⟩ { · · · } (extends ⟨supertypes⟩)? ?exists(⟨relation-id⟩::new).
?equals(⟨relation-id⟩::new, ⟨relation-id⟩::new).
⟨relation-id⟩(⟨relation-id⟩::new).
For each supertype: ⟨supertype-id⟩(⟨relation-id⟩::new).
For each incompatible type: ⟨other-type-id⟩(⟨relation-id⟩::new).

enum ⟨relation-id⟩ { ⟨object-id1⟩, · · · ,⟨object-idk⟩ } For each enum literal i: ⟨relation-id⟩('⟨object-idi⟩').
For each literals i ̸= j: !equals('⟨object-idi⟩', '⟨object-idj⟩').
default !⟨relation-id⟩(*).

Table 4 Translations for Xcore classes and enums.

extended by enumerated types with predefined instances (with
the enum keyword). References and attributes are defined over
the strict type hierarchy with multiplicity constraints (denoted
with [lower, upper]) and containment notation (denoted with
the contains keyword).
Example 5.1. The following example captures a fragment of
the metamodel in Figure 1.

1 abstract class CommunicatingElement {
2 contains CommSubsystem [1, 2] commSubsystem
3 }
4 class CubeSat3U extends CommunicatingElement { }
5 class CommSubsystem {
6 refers CommSubsystem [0, 1] target
7 CommunicationType [1, 1] type
8 real[1, 1] frequency
9 }

10 enum CommunicationType { KaComm , UHFComm , XComm }

CommunicatingElement is defined as an abstract
class, which has a concrete subclass CubeSat3U. Each
CommunicatingElement contains one or two CommSubsys-
tem instances, which has a non-containment reference to an-
other CommSubsystem, a reference to an enum Communica-
tionType, and a real frequency value.

In order to map Xcore to partial models, each non-abstract
class can be mapped to partial model object ⟨relation-id⟩::new,
which represents all potential newly generated instances, and
defines its valid type combination (based on the inheritance
relations). With this mapping, abstract classes are also repre-
sented correctly.

Enumerated types with enum literals ⟨id1⟩, · · · ,⟨idn⟩ can
mapped to partial model objects by

– defining a named-object for each literal '⟨idi⟩',
– setting the type of each object '⟨idi⟩' to true for the

enum type and false for each other types and
– specifying that no other object has the enum type.

These translations are illustrated in Table 4.
The type hierarchy imposes global structural well-formed-

ness constraints over all objects of the partial model. This is
enforced by the following structural predicates:

– If an object is an instance of class C then it is an instance
of all supertypes Sup_1, · · · , Sup_n.

1 error(C o) :− !Sup_1(o). % ...
2 error(C o) :− !Sup_n(o).

– If an object is an instance of class C, then it is not an
instance of any incompatible class I_1, · · · , I_n that is
not connected to C via a directed extends path.

1 error(C o) :− I_1(o). % ...
2 error(C o) :− I_n(o).

– If an object is an instance of an abstract type A, then it must
be an instance of a concrete subtype Sub_1, · · · , Sub_n.

1 error(A o) :− !Sub_1(o), /∗...∗/, !Sub_n(o).

Each reference and attribute R is mapped to a relation with
default value unknown between the objects, and false between
objects with incompatible types I_1 and I_2 (including the
::new objects derived from the classes).

1 default R(∗, ∗): unknown.
2 % For all incompatible objects i_1 , i_2:
3 !R(i_1 , i_2).

References and attributes also impose extra global structural
constraints as follows.

– Type of a relation R between classes S and T is enforced by
the following constraint:

1 error(s, t) :− R(s, t), !S(s).
2 error(s, t) :− R(s, t), !T(t).

– If a reference R has a contains label, then it is a contain-
ment relation.

1 containment R.

– The multiplicity constraint [lower, upper] is translated
into two error predicates that match when the multiplicity
is outside of the given range.

1 countOfR(S o) := count { R(o, _) }.
2 error(S o) :− countOfR(o) < lower.
3 error(S o) :− countOfR(o) > upper.

– If the upper multiplicity bound is 1 and the target type T
is real or int, the attribute R is marked as functional for
easy use in metric definitions.

1 functional R.

10 Marussy et al.

error

false true

unknown

≤

⊑

⊕ u f t e
u u f t e
f f f e e
t t e t e
e e e e e

(a) Lattice of logic values and information merge

¬4

u u
f t
t f
e e

∨4 u f t e
u u u t t
f u f t e
t t t t t
e t e t e

∧4 u f t e
u u f u f
f f f f f
t u f t e
e f f e e

(b) Truth tables of logical connectives

Figure 3 Four-valued Belnap–Dunn logic

Similar mappings can be provided for other modeling tech-
nologies like OWL for description logic, GraphQL or languages
used in graph database technologies.

6. Semantics of partial models

6.1. Representing incomplete and inconsistent models
6.1.1. Four-valued logic In this paper, we utilize 4-valued
logic to explicitly represent unfinished, partial (paracomplete)
models, as well as errors and inconsistencies (paraconsistency)
arising during the evaluation of computations over such models.
This section provides semantic foundations for our specification
language based on the inconsistency-tolerant Belnap-Dunn 4-
valued logic (Belnap 1977; Kamide & Omori 2017), which
can reason about runtime errors caused by undefined arithmetic
operations, such as division by zero (McKubre-Jordens & Weber
2012).

Belnap-Dunn 4-valued logic contains the usual false false
and true true truth values, the unknown unknown value intro-
duced for unspecified or unknown properties, and the inconsis-
tent error value that signals inconsistencies and computation
failures. The subset {false, true, unknown} of logic values
can express partial, but consistent information. Conversely, the
subset {false, true, error} expresses possibly inconsistent,
but complete information.

Two partial orders can be defined over 4-valued logic values
(Figure 3a). Information order (denoted by ⊑) expresses the
gathering of information as new facts are learned during the
refinement of partial models. Facts with unknown logical value
can be set to either true or false, while a change to error
signifies an inconsistency or failure. This order is defined as

(X ⊑ Y) ⇔ [(X = unknown) ∨ (X = Y) ∨ (Y = error)].

The second partial order is implication order, which defined as

(X ≤ Y) ⇔ [(X = false) ∨ (X = Y) ∨ (Y = true)]

and serves as a generalization of logical implication. We will
write X ⊏ Y and (resp. X < Y) when X ⊑ Y (resp. X ≤ Y)
and X ̸= Y hold.

The information merge operator ⊕ merges 4-valued truth
values where contradictory information results in error. Other
operations on 4-valued truth values ¬4, ∨4, and ∧4 are exten-
sions of the usual logic operators ¬, ∨, and ∧. Their truth tables
(see Figure 3b) correspond with their classical counterparts for
{false, true} inputs.

Semantically, unknown truth value represents potential true
or false (or error) values, and the semantic is chosen to
cover all of those options. On the other hand, error is often
unintuitive, but it allows the precise and explicit localization
of inconsistencies within models (Belnap 1977; Chechik et
al. 2011). For example, we may see that if X = error and
Y = unknown, then X ∨4 Y = true, because the only way for
our logical inference to result in a consistent truth value is to
eventually learn that Y is true. Should Y turn out to be false,
the inconsistent error value will be propagated.

6.1.2. Interval arithmetic We use interval arithmetic to rep-
resent unfinished or inconsistent numerical values. A closed,
possibly infinite interval iv ∈ IV ⊊ 2R of real numbers denotes
a set of possible numerical values. The empty interval ∅ ∈ IV

denotes a missing value or a result of failed computation.
The operators +♯, −♯, ·♯, /♯, ↑♯, Σ♯, min♯ and max♯ refer

to the interval arithmetic (Kulisch 2009) versions of the usual
+ (addition), − (subtraction), · (multiplication), / (division),
↑ (exponentiation), Σ (summation), min and max operations
over real numbers, respectively. The ⊔ symbol denotes the join
(smallest interval containing both intervals) of two intervals,
while ∩ denotes interval intersection. Additionally, we define a
special (directed) multiplication operator, which properly prop-
agates the number of errors when multiplying a value with a
number of matches.

iv1 ·▷ iv2 =

iv1 ·♯ iv2 if iv2 ̸= ∅,
[0, 0] if 0 ∈ iv1 and iv2 = ∅,
∅ if 0 /∈ iv1 and iv2 = ∅.

6.2. Partial models
First, we provide an algebraic definition for partial models. For
that purpose, one needs to establish a signature and a logic
structure defined over it.

Definition 1. A signature ⟨Σ, α⟩ is collection of relation and
metric symbols Σ = ΣR ∪ΣN and an arity function α : Σ → N.
ΣR is the finite set of relation symbols, which includes

– R1, . . . , Rk, which are the base relation symbols;
– P1, . . . , Pℓ, which are the predicate symbols;
– 'N1', . . . , 'Nt', which are the names of named objects;
– exists, which is the existence relation symbol with

α(exists) = 1;
– equals, which is the equality relation symbol with

α(equals) = 2;
– domain, designating domain objects with

α(domain) = 1;

A specification language for consistent model generation based on partial models 11

– data, designating data objects with
α(data) = 1;

– real, designating real number data objects with
α(real) = 1;

– int, designating integer data objects with
α(int) = 1.

ΣM is the finite set of numeric symbols that is disjoint from ΣS
and includes

– M1, . . . , Mu, which are the metric symbols;
– value, designating the numeric value of data objects with

α(value) = 1.

Definition 2. Given a signature ⟨Σ, α⟩, a partial model is a
logic structure P = ⟨OP, IP,VP⟩, where

– OP is the finite set of objects in the model;
– IP gives a 4-valued logic interpretation for each rela-

tion symbol r ∈ ΣR IP(r) : (OP)
α(r) → {false, true,

unknown, error};
– VP gives a numeric value interpretation for each metric

symbol m ∈ ΣM as VP(m) : (OP)
α(m) → IV.

We define a concept of regularity for partial models (for
detailed definitions, see Appendix C). The relevance of the
concept is that each intermediate model retrieved by a graph
solver is assured to be regular by applying a set of propagation
rules. Naturally, when an initial partial model is provided by
the user, it may not be regular, but one can still apply those
propagation rules to regularize it. Note that the regularity of a
partial model is different from its consistency, which will be
defined in the sequel.

Definition 3. A partial model P is regular if it is structurally
regular (Definition 11), naming regular (Definition 12) and data
regular (Definition 13).

Concrete instance models are special form of partial models
where all structural predicates are resolved to true or false
values (i.e. unknown and error values are not used) and all
intervals representing data values uniquely contain a single
value (i.e. when an attribute value is 1 then it is represented as
an interval [1, 1]).

Definition 4. A regular partial model P is concrete, if

– for each relation symbol r ∈ ΣR which is either a base
relation symbol R1, . . . , Rk, an object name 'N1', . . . , 'Nt'
or a built-in relation symbol exists, equals, domain,
data, real, int, the interpretation IP(r) contains true
and false values only;

– for each object o ∈ OP satisfying IP(real)(o) = true,
VP(value)(o) = [x, x] for some real number x ∈ R;

– for each object o ∈ OP satisfying IP(int)(o) = true,
VP(value)(o) = [x, x] for some whole number x ∈ Z.

6.3. Compatibility and inconsistency of partial models
To incorporate the definitions of graph predicates and metrics,
we define a respective theory (set of axioms). As such, we

can focus only on semantic interpretations of partial models
which are compatible with the actual definitions. For example,
if a particular metric computes a value as a result, then the
interpretation of the data object stored in the partial model
should actually retrieve the respective value.

Definition 5. Given a signature ⟨Σ, α⟩, a theory T is a set of
axioms

T = {P1(v
(1)
P1

, · · · , v(α(P1))
P1

) ⇔ φP1 , . . . ,

Pℓ(v
(1)
Pℓ , · · · , v(α(Pℓ))Pℓ) ⇔ φPℓ ,

M1(v
(1)
M1

, · · · , v(α(M1))
M1

) ≡ µM1 , . . . ,

Mu(v
(1)
Mu

, · · · , v(α(Mu))
Mu

) ≡ µMu },

where there is a single axiom for each predicate symbol Pi and
each metric symbol Mi. The variables v(j)

Pi
and v(j)

Mi
correspond

to the parameters of the predicate Pi or the metric Mi, and are
free in the predicate definition body φPi or metric expression
µMi , respectively.

6.3.1. Semantics of predicates and metrics A defined
predicate P(v1, . . . , vn) ⇔ φ can be evaluated on a partial
model P along a variable binding Z : {v1, . . . , vn} → OP (de-
noted as JφKP

Z), which can result in four truth values: true,
false, unknown or error. The inductive rules for evaluating
the semantics of a logic expression are illustrated in Table 5.
We use the notation Z′ = (Z, u 7→ o) to extend the binding Z
into a new binding Z: Z′(v) = o if v = u, Z(v) otherwise.

A metric M(v1, . . . , vn) ≡ µ can also be evaluated on a
partial model P along variable binding Z : {v1, . . . , vn} → OP
(denoted as LµMP

Z), resulting in a possibly infinite interval. The
empty interval signifies that the evaluation of the metric has
failed, e.g. due to division by zero or other undefined algebraic
operations. The inductive rules capturing the semantics of a
metric expression are illustrated in Table 6.

6.3.2. Compatibility and inconsistency The proper align-
ment of the truth values and metric intervals assigned by the
semantic interpretation of a partial model and the definition
of predicates and metrics (in a theory) is characterized by the
concept of compatibility. Informally, a partial model P is com-
patible with a theory, if the truth values and metric intervals
assigned by the definition and the interpretation are identical.

Definition 6. Given a signature ⟨Σ, α⟩ along with a regular
partial model P and a theory T, P is compatible with T, if

– for all predicate symbols P ∈ ΣR and for all objects
o1, . . . , oα(P) ∈ OP, JφPKP

Z = IP(P)(o1, . . . , oα(P)),

where Z = v(1)P 7→ o1, . . . , v(α(P))P 7→ oα(P); and
– for all metric symbols M ∈ ΣM and for all objects

o1, . . . , oα(M) ∈ OP, LφMMP
Z = VP(M)(o1, . . . , oα(M)),

where Z = v(1)M 7→ o1, . . . , v(α(M))M 7→ oα(P).

Using the 4-valued interpretation, inconsistencies for a do-
main object in a partial model are recorded in the partial model

12 Marussy et al.

JR(v1, . . . ,vn)KP
Z := IP(R)(Z(v1), . . . , Z(vn))

Jv == 'N'KP
Z := IP('N')(Z(v))

JR+(v1,v2)K
P
Z := JR(v1,v2)K

P
Z ∨4 JR(v1,m1),R(m1,v2)K

P
Z ∨4 · · · ∨4 JR(v1,m1), . . . ,R(mn,v2)K

P
Z,

where n = |OP|

JR*(v1,v2)K
P
Z := IP(equals)(Z(v1), Z(v2)) ∨4 JR+(v1,v2)K

P
Z

J!φKP
Z :=

∧4

o1,...,om∈OP

(
¬4Jexists(u1)K

P
u1 7→o1

∨4 · · · ∨4 ¬4Jexists(um)KP
um 7→om

∨4

¬4JφKP
Z,u1 7→o1,...,um 7→om

)
,

where φ has free variables u1, . . . , um

Jφ1, . . . ,φnKP
Z :=

∨4

o1,...,om∈OP

(
Jexists(u1)K

P
u1 7→o1

∧4 · · · ∧4 Jexists(um)KP
um 7→om

∧4

Jφ1K
P
Z,u1 7→o1,...,um 7→om

∧4 · · · ∧4 JφnKP
Z,u1 7→o1,...,um 7→om

)
where φ1, . . . , φn have free variables u1, . . . , um

Jφ1; . . . ;φnKP
Z := Jφ1K

P
Z,u1 7→o1,...,um 7→om

∨4 · · · ∨4 JφnKP
Z,u1 7→o1,...,um 7→om

JM(v1, . . . ,vn) in ivKP
Z :=

unknown if iv′ ∩ iv ̸= ∅ and iv′ ̸⊆ iv, error if iv′ = ∅,

false if iv′ ̸= ∅ and iv′ ∩ iv = ∅, true if iv′ ̸= ∅ and iv′ ⊆ iv

where iv′ = VP(M)(Z(v1), . . . , Z(vn))

Table 5 Inductive semantics of graph predicates.

itself by using the error values. Similarly, inconsistencies for
a data object are identified when the interval of possible values
for the data object is the empty set. Note that an inconsistent
model cannot be concrete.

Definition 7. A regular partial model P is inconsistent if

– for some relation symbol r ∈ ΣR which is either a base
relation symbol R1, . . . , Rk, an object name 'N1', . . . , 'Nt'
or a built-in relation symbol exists, equals, domain,
data, real or int, the interpretation IP(r) contains at
least one error value; or

– there is an object o ∈ OP with IP(data)(o) ⊒ true and
VP(value)(o) = ∅.

6.4. Model generation and optimization by refinement
and concretization

The generation of consistent (concrete) models is driven by a
series of refinement and concretization steps where the level of
uncertainty in partial models is gradually reduced. When all
uncertainties are resolved and there is still no inconsistency in
the model then a concrete model is obtained.

Definition 8. A refinement from P to Q (denoted as P ⊑ Q)
is defined by a refinement function between the objects of the
partial model ref : OP → 2OQ which respect the information
ordering of 4-valued logic values and intervals:

– For each relation symbol r ∈ ΣR, for each object
p1, . . . , pα(r) ∈ OP and for each corresponding object

q1 ∈ ref (p1), . . . , qα(r) ∈ ref (pα(r)),

IP(r)(p1, . . . , pα(r)) ⊑ IQ(r)(q1, . . . , qα(r)).

– For each metric symbol m ∈ ΣM, for each object
p1, . . . , pα(m) ∈ OP and for each corresponding object
q1 ∈ ref (p1), . . . , qα(m) ∈ ref (pα(m)),

VP(m)(p1, . . . , pn) ⊇ VQ(m)(q1, . . . , qn).

– All objects in Q are refined from an object in P:

OQ =
⋃

p∈OP
ref (p).

– Existing objects p ∈ OP cannot disappear, i.e. they must
have non-empty refinements:

[IP(exists)(p) ⊒ true] ⇒ [ref (p) ̸= ∅].

Next, we formally define the task of (consistent) model
generation along partial models. Given a model generation
task, a complete model generator outputs some model Q ∈
solutions(P, T) if solutions(P, T) is non-empty. Otherwise, it
provides a proof of the unsatisfiability of the task.

Definition 9. A model generation task consists of a signature
⟨Σ, α⟩ along with a regular partial model P and a theory T. The
solutions of the model generation task are

solutions(P, T) = {Q | P ⊑ Q and Q is concrete
and it is compatible with T}.

A specification language for consistent model generation based on partial models 13

LxMP
Z := [x, x], where x ∈ R LM(v1, . . . ,vn)MP

Z := V(M)(Z(v1), . . . , Z(vn))

LvMP
Z := V(value)(Z(v)) L⟨unary-op⟩µMP

Z := ⟨unary-op⟩♯LµMP
Z (e.g. +, -)

Lµ as intMP
Z :=

[⌊a⌋, ⌊b⌋] if LµMP
Z = [a, b],

∅ otherwise
Lµ1 ⟨binary-op⟩ µ2M

P
Z := Lµ1M

P
Z ⟨binary-op⟩♯ Lµ2M

P
Z (e.g. +, -, *, /, ^)

Lif φ then µ1 else µ2M
P
Z :=

 Lµ1M
P
Z if JφKP

Z = true, Lµ2M
P
Z if JφKP

Z = false,

Lµ1M
P
Z ⊔ Lµ2M

P
Z if JφKP

Z = unknown, ∅ if JφKP
Z = error

Lφ1 -> µ1; . . . ;φn -> µnMP
Z :=

∅ if branches(error) ̸= ∅ or |branches(true)| ≥ 2,

LµiM
P
Z if branches(error) = ∅ and branches(true) = {i},⊔

i∈branches(unknown) LµiM
P
Z otherwise,

where branches(X) = {i = 1, . . . , n | JφiK
P
Z = X}

For aggregation operators sum, min, max and single L⟨aggregation-op⟩{ µ | φ }MP
Z, we define the auxiliary functions

matchesφ(X) = {Z′ = (Z, u1 7→ o1, . . . , um 7→ om) | IP(exists)(o1) ∧4 · · · ∧4 IP(exists)(o1) ∧4 JφKP
Z′ = X},

matchCountφ(Z′) =

{
count(Z′(o1)) ·♯ . . . ·♯ count(Z′(om)) if Z′ ∈ matchesφ(true),
count(Z′(o1)) ·♯ . . . ·♯ count(Z′(om)) ⊔ [0, 0] otherwise

count(o) =

[0, 1] if IP(exists)(o) = unknown and IP(equals)(o, o) = true,
[1, 1] if IP(exists)(o) = true and IP(equals)(o, o) = true,
[0,+∞] if IP(exists)(o) = unknown and IP(equals)(o, o) = unknown,
[1,+∞] if IP(exists)(o) = true and IP(equals)(o, o) = unknown,
∅ if IP(exists)(o) = error or IP(equals)(o, o) = error,

where φ has free variables u1, . . . , um.

Lsum { µ | φ }MP
Z :=

 ∅ if matchesφ(error) ̸= ∅ ,

∑♯
Z′∈matchesφ(unknown)∪matchesφ(true)

matchCountφ(Z′) ·▷ LµMP
Z′ otherwise

Lmin { µ | φ }MP
Z :=

 ∅ if matchesφ(error) ̸= ∅,

min♯{iv1, iv2} otherwise

where iv1 = min♯

Z′∈matchesφ(unknown),LµMP
Z′ ̸=∅

LµMP
Z′ and iv2 = min♯

Z′∈matchesφ(true)
LµMP

Z′

Lmax { µ | φ }MP
Z :=

 ∅ if matchesφ(error) ̸= ∅,

max♯{iv1, iv2} otherwise

where iv1 = max♯
Z′∈matchesφ(unknown),LµMP

Z′ ̸=∅
LµMP

Z′ and iv2 = max♯Z′∈matchesφ(true)
LµMP

Z′

Lsingle { µ | φ }MP
Z :=

∅ if matchesφ(error) ̸= ∅ or |matchesφ(true)| ≥ 2,

LµMP
Z′ if matchesφ(error) = ∅ and |matchesφ(true)| = {Z′},⊔

Z′∈matchesφ(unknown) LµMP
Z′ otherwise

Table 6 Inductive semantics of metric expressions.

14 Marussy et al.

As a corollary, if a partial model P is inconsistent, then its
refinements Q (P ⊑ Q) cannot be concrete. Hence, when
searching for a concrete, consistent refinement of P, model
generators can abandon inconsistent partial models Q without
compromising the completeness of model generation.

An optimizing model generator aims to find a consistent
model Q ∈ optimal(P, T, M) optimal with respect to a given
objective M if such a model exists. As such, conceptually, a
model generator can also handle model optimization challenges
with appropriate modifications of the search strategy (e.g. using
a branch-and-bound strategy).

Definition 10. A single-objective model optimization task is a
model generation task P, T over a signature ⟨Σ, α⟩ along with a
0-ary metric symbol M ∈ Σ (α(M) = 0) serving as the objective
to be maximized. The optimal solutions of the task are

optimal(P, T, M) = {Q | Q ∈ solutions(P, T) and

∀Q′ ∈ solutions(P, T) : VQ(M)() ≥ VQ′(M)()}.

Note that the definition of a model generation task complies
with (but generalizes) the previous formalization of the model
generation problem in Varró et al. (2018). As such, existing
model generation techniques and tools (Semeráth et al. 2018,
2020) remain applicable in our context. On the other hand,
these existing approaches do not support an optimizing model
generator, which is to be targeted in future work.

7. Related work
Several software engineering and verification approaches are
based on the automated generation or extension of graph-based
models. In the following, we are summarizing those techniques
and their relation with our partial modeling language.

7.1. Model generation for domain-specific languages
Several approaches map a model modeling artifacts into a logic
problem solved by an underlying backend solver. There are
several approaches aiming to validate standardized engineering
models enriched with OCL constraints (Gogolla et al. 2005) by
relying upon different back-end logic-based approaches such as
constraint logic programming (Cabot et al. 2007, 2008; Büttner
& Cabot 2012), SAT-based model finders (Shah et al. 2009;
Anastasakis et al. 2010; Büttner et al. 2012; Kuhlmann et al.
2011; Soeken et al. 2010; Semeráth et al. 2017, 2016), CSP
solvers (González et al. 2012) first-order logic (Beckert et al.
2002), constructive query containment (Queralt et al. 2012),
higher-order logic (Brucker & Wolff 2007; Grönniger et al.
2009), rewriting logic (Clavel & Egea 2008), or genetic algo-
rithms (Soltana et al. 2017, 2020).

Partial snapshots, metamodels and a large fragment of con-
straints, defined either as OCL constraints (“Object Constraint
Language, v2.4” 2014) or VIATRA queries (Varró et al. 2016),
can be uniformly represented as first order constraints (Semeráth
et al. 2017). As a main conceptual difference, this approach op-
erates directly on a mathematically precise formalism, but, for
the sake of reusability, it avoids direct integration with existing
modeling tools.

7.2. Partial modeling
Partial models are similar to uncertain models, which offer a rich
specification language (Famelis et al. 2012; Salay & Chechik
2015) amenable to analysis. They provide a more intuitive,
user-friendly language compared to our mathematical notation,
but without handling additional predicates and metrics. With
respect to expression power, Semeráth & Varró (2017) presented
a rewriting techniques that maps uncertain models to (3-valued)
partial models. Potential concrete models compliant with an un-
certain model can be synthesized by the Alloy Analyzer (Salay
et al. 2012), or refined by graph transformation rules (Salay et
al. 2015).

In some extended approaches, like Famelis et al. (2013),
it is possible to analyze predicates and executions of model
transformation rules on partial models by using a SAT solver
(MathSAT4) or by automated graph approximation (referred
to as “lifting”), or by graph query engines (Semeráth & Varró
2017). As a key difference, our approach carries out model
refinement while simultaneously evaluating predicates and met-
rics.

7.3. Feature modeling
Feature modeling is an engineering formalism to define the pos-
sible combination of selected features from a large selection
of atomic features (Lee et al. 2002; Griss et al. 1998). While
configurations (i.e. a valid combination of features) can be rep-
resented as a graph model (where each object is named, and
only edges and the exists relation have unknown values), not
all graph generation problems can be represented as a feature
modeling problem.

Clafer (Bak et al. 2010) is a lightweight structural modeling
language used for feature modeling with minimalistic syntax
and rich semantics equivalent to first-order relational logic. The
specification language supports structural modeling, constraints
(well-formedness constraints are written in their own language,
which is said to be equivalent to FOL) and also partial configura-
tions. Partial configurations are like partial snapshots in our ap-
proach: instance models with undefined attributes and features
that can be the basis of model completion. DSL specification
given in Clafer are validated using the Clafer Tools (Antkiewicz
et al. 2013) that supports various tasks for domain engineering,
like consistency checking and instance model generation based
on backend reasoners like Alloy or Choco (Liang 2012).

7.4. Symbolic approaches
Certain techniques use abstract (or symbolic) graphs for analysis
purposes. A tableau-based reasoning method is proposed for
graph properties (Schneider et al. 2017; Pennemann 2008; Al-
Sibahi et al. 2016), which automatically refines solutions based
on WF constraints, and handles the state space in the form of a
resolution tree as opposed to a partial model. When scalability
evaluation is included, these techniques demonstrated to derive
only small graphs (< 10 objects).

7.5. Shape analysis
Another group of symbolic approaches introduces sophisticated
type graphs to uniformly represent objects with similar prop-

A specification language for consistent model generation based on partial models 15

erties. Reps et al. (2004); Ferrara et al. (2012); Gopan et al.
(2004) introduce predicate abstraction techniques for graphs
using 3-valued logic, which is used as a theoretical basis for our
model generation technique. In those approaches, concretiza-
tion is used to materialize (typically small) counter-examples for
designated safety properties in a graph transformation system.
However, their focus is to support model checking of abstract
graph transformation systems, which can evaluate complex tra-
jectories, but do not scale in the size of the models.

A similar neighborhood-based abstract interpretation tech-
nique is introduced by Rensink & Distefano (2006), where each
abstract object is represents objects with similar neighborhood
(up to a given range).

Handling numeric (integer or real) variables and constraints
in model generation scenarios requires their abstract interpreta-
tion through numerical abstract domains (Miné 2004; Singh et
al. 2018). Numerical abstract domains may be used to summa-
rize object attributes in value analysis of heap programs (Magill
et al. 2007; McCloskey et al. 2010; Ferrara et al. 2012). Sum-
marized dimensions (Gopan et al. 2004) were introduced to
succinctly represent attributes of a potentially unbounded set
of objects via multi-objects. This approach enables attribute
handling in three-valued partial models, and allows checking
for refinements by abstract subsumption (Anand et al. 2009).
But these approaches do not generate graph models.

7.6. Specification frameworks
Complete frameworks with standalone specification languages
include Formula (E. K. Jackson et al. 2011), which uses the
Z3 SMT-solver (de Moura & Bjørner 2008), Alloy (D. Jackson
2002), which relies on a similar relational logic (Torlak & Jack-
son 2007) and SAT-solvers like Sat4j (Le Berre & Parrain 2010),
and Clafer (Bak et al. 2013), which uses reasoners like Alloy.

As a main difference, our specification language is capable of
uniformly representing various model generation and optimiza-
tion tasks, any initial or intermediate state of model generation,
and the concrete models generated as result. As such, it is espe-
cially suitable for support iterative model generation, where the
output of one run can be used as the input of the next run.

8. Conclusions and future work
In this paper, we have proposed a novel specification language
for partial models to be used for consistent graph model genera-
tion. While a novel class of model generators derive consistent
instance models along a refinement calculus of partial models,
we intend to uniformly represent any intermediate state of the
generation (not only the initial and final states). Key features of
our specification language have been presented along a series
of examples in the context of a complex case study proposed
by NASA researchers. As a major novelty, our language seam-
lessly integrates partial models with graph predicates and graph
metrics, which can mutually depend on each other. We define
precise semantics for our language using a 4-valued interpre-
tation based on Belnap–Dunn logic. On a practical note, a
parser and textual editor has been implemented using the Xtext
technology.

The proposed language can serve as a user-friendly front-end
for model generation tasks used in a series of past papers (Se-
meráth et al. 2018, 2020) as well as in other modeling challenges.
However, no support exists currently for model optimization
tasks, which provides the main direction of our future work.

References

Al-Sibahi, A. S., Dimovski, A. S., & Wasowski, A. (2016).
Symbolic execution of high-level transformations. In Sle
2016 (p. 207-220). Springer.

Anand, S., Păsăreanu, C. S., & Visser, W. (2009). Symbolic ex-
ecution with abstraction. Int. J. Softw. Tools Technol. Transf.,
11(1), 53-67.

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2010).
On challenges of model transformation from UML to Alloy.
Softw. Syst. Model., 9(1), 69-86.

Antkiewicz, M., Bak, K., Murashkin, A., Olaechea, R., Liang,
J., & Czarnecki, K. (2013). Clafer tools for product line
engineering. In Splc. Tokyo, Japan.

Bak, K., Czarnecki, K., & Wasowski, A. (2010, 10/2010).
Feature and meta-models in clafer: Mixed, specialized, and
coupled. In 3rd international conference on software lan-
guage engineering. Eindhoven, The Netherlands. doi:
10.1007/978-3-642-19440-5_7

Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., & Wa-
sowski, A. (2013). Clafer: unifying class and feature model-
ing. Softw. Syst. Model., 1-35.

Beckert, B., Keller, U., & Schmitt, P. H. (2002). Translating the
Object Constraint Language into First-order Predicate Logic.
In Proc. verify, workshop at floc.

Belnap, N. D., Jr. (1977). A useful four-valued logic. In Modern
uses of multiple-valued logic (Vol. 2, p. 5-37). Springer. doi:
10.1007/978-94-010-1161-7_2

Brucker, A. D., & Wolff, B. (2007). The HOL-OCL tool.
(http://www.brucker.ch/)

Büttner, F., & Cabot, J. (2012). Lightweight string reasoning for
OCL. In A. Vallecillo, J.-P. Tolvanen, E. Kindler, H. Störrle,
& D. S. Kolovos (Eds.), Ecmfa 2012 (Vol. 7349, p. 244-258).
Springer.

Büttner, F., Egea, M., Cabot, J., & Gogolla, M. (2012). Verifi-
cation of ATL transformations using transformation models
and model finders. In Icfem (p. 198-213). Springer.

Cabot, J., Clarisó, R., & Riera, D. (2007). UMLtoCSP: a
tool for the formal verification of UML/OCL models using
constraint programming. In Ase 2017 (p. 547-548). ACM.

Cabot, J., Clariso, R., & Riera, D. (2008, April). Verification of
UML/OCL class diagrams using constraint programming. In
Software testing verification and validation workshop, 2008.
icstw ’08. ieee international conf. on (p. 73-80).

Chechik, M., Nejati, S., & Sabetzadeh, M. (2011). A
relationship-based approach to model integration. Innova-
tions in Systems and Software Engineering, 8(1), 3-18. doi:
10.1007/s11334-011-0155-2

Clavel, M., & Egea, M. (2008). The ITP/OCL tool. (http://
maude.sip.ucm.es/itp/ocl/)

16 Marussy et al.

http://www.brucker.ch/
http://maude.sip.ucm.es/itp/ocl/
http://maude.sip.ucm.es/itp/ocl/

de Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT
solver. In Tools and algorithms for the construction and
analysis of systems, 14th international conference (tacas
2008) (Vol. 4963, p. 337-340). Springer.

Eclipse Modeling Framework [Computer software manual].
(2019). (http://www.eclipse.org/emf)

Famelis, M., Salay, R., & Chechik, M. (2012). Partial models:
Towards modeling and reasoning with uncertainty. In ICSE
(pp. 573–583). IEEE Computer Society.

Famelis, M., Salay, R., Di Sandro, A., & Chechik, M. (2013).
Transformation of models containing uncertainty. In Inter-
national conference on model driven engineering languages
and systems (pp. 673–689).

Ferrara, P., Fuchs, R., & Juhasz, U. (2012). TVAL+: TVLA and
value analyses together. In Sefm 2012 (Vol. 7504, p. 63-77).
Springer.

Friedenthal, S., Moore, A., & Steiner, R. (2008). A practical
guide to sysml: Systems modeling language. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Gogolla, M., Bohling, J., & Richters, M. (2005). Validating
UML and OCL models in USE by automatic snapshot gener-
ation. Softw. Syst. Model., 4, 386-398.

González, C. A., Büttner, F., Clarisó, R., & Cabot, J. (2012).
EMFtoCSP: a tool for the lightweight verification of EMF
models. In Formsera 2012 (p. 44-50).

Gopan, D., DiMaio, F., Dor, N., Reps, T., & Sagiv, M. (2004).
Numeric domains with summarized dimensions. In Tacas
2004 (Vol. 2988, p. 512-529). Springer.

Griss, M. L., Favaro, J., & d’Alessandro, M. (1998). Integrating
feature modeling with the rseb. In Proceedings. fifth inter-
national conference on software reuse (cat. no. 98tb100203)
(pp. 76–85).

Grönniger, H., Ringert, J. O., & Rumpe, B. (2009). System
model-based definition of modeling language semantics. In
Forte (Vol. 5522, p. 152-166). Springer.

Herzig, S. J. I., Mandutianu, S., Kim, H., Hernandez, S., &
Imken, T. (2017). Model-transformation-based computa-
tional design synthesis for mission architecture optimization.
In Ieee aerospace conference. IEEE.

Jackson, D. (2002). Alloy: a lightweight object modelling
notation. Trans. Softw. Eng. Methodol., 11(2), 256–290.

Jackson, E. K., Levendovszky, T., & Balasubramanian, D.
(2011). Reasoning about metamodeling with formal specifi-
cations and automatic proofs. In Model driven engineering
languages and systems (pp. 653–667). Springer.

Kamide, N., & Omori, H. (2017). An extended first-order
Belnap-Dunn logic with classical negation. In Lori 2017 (Vol.
10455, p. 79-93). Springer. doi: 10.1007/978-3-662-55665-8
_6

Kleene, S. C., De Bruijn, N., de Groot, J., & Zaanen, A. C.
(1952). Introduction to metamathematics (Vol. 483). van
Nostrand New York.

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Extensive
validation of OCL models by integrating SAT solving into
USE. In Tools ’11 (Vol. 6705, p. 290-306).

Kulisch, U. W. (2009). Complete interval arithmetic and its
implementation of the computer. In Numerical validation in

current hardware architectures (Vol. 5492, p. 7-26). Springer.
doi: 10.1007/978-3-642-01591-5_2

Le Berre, D., & Parrain, A. (2010). The sat4j library, release
2.2. Journal on Satisfiability, Boolean Modeling and Compu-
tation(2-3), 59–64.

Lee, K., Kang, K. C., & Lee, J. (2002). Concepts and guidelines
of feature modeling for product line software engineering. In
International conference on software reuse (pp. 62–77).

Liang, J. (2012, 12/2012). Solving clafer models with choco.
(GSDLab-TR 2012-12-30).

Magill, S., Berdine, J., Clarke, E., & Cook, B. (2007). Arith-
metic strengthening for shape analysis. In Sas 2007 (Vol.
4634, p. 419-436). Springer.

Marussy, K., Semeráth, O., & Varró, D. (2018). Incremental
view model synchronization using partial models. In Models
2018 (p. 323-333).

McCloskey, B., Reps, T., & Sagiv, M. (2010). Statically in-
ferring complex heap, array, and numeric invariants. In Sas
2010 (Vol. 6337, p. 71-99). Springer.

McKubre-Jordens, M., & Weber, Z. (2012). Real analaysis
in paraconsistent logic. J. Phil. Logic, 41(5), 901-922. doi:
10.1007/s10992-011-9210-6

Miné, A. (2004). Weakly relational numerical abstract domains
(Unpublished doctoral dissertation).

Object Constraint Language, v2.4 [Computer software manual].
(2014, February).

Pennemann, K.-H. (2008). Resolution-like theorem proving for
high-level conditions. In Icgt 2008 (Vol. 5214, p. 289-304).
Springer.

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012).
OCL-Lite: Finite reasoning on UML/OCL conceptual
schemas. Data Knowl. Eng., 73, 1-22.

Rensink, A., & Distefano, D. (2006). Abstract graph transfor-
mation. Electronic Notes in Theoretical Computer Science,
157(1), 39–59.

Reps, T. W., Sagiv, M., & Wilhelm, R. (2004). Static program
analysis via 3-valued logic. In International conference on
computer aided verification (pp. 15–30).

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified mod-
eling language reference manual, the (2nd edition). Pearson
Higher Education.

Salay, R., & Chechik, M. (2015). A generalized formal frame-
work for partial modeling. In A. Egyed & I. Schaefer (Eds.),
Fundamental approaches to software engineering (Vol. 9033,
p. 133-148). Springer Berlin Heidelberg.

Salay, R., Chechik, M., Famelis, M., & Gorzny, J. (2015).
A methodology for verifying refinements of partial models.
Journal of Object Technology, 14(3), 3:1–31.

Salay, R., Famelis, M., & Chechik, M. (2012). Language
independent refinement using partial modeling. In FASE (pp.
224–239). Springer.

Schneider, S., Lambers, L., & Orejas, F. (2017). Symbolic
model generation for graph properties. In Fase 2017 (Vol.
10202, p. 226-243). Springer.

Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., & Varró, D.
(2017). Formal validation of domain-specific languages with
derived features and well-formedness constraints. Softw. Syst.

A specification language for consistent model generation based on partial models 17

http://www.eclipse.org/emf

Model, 16(2), 357-392.
Semeráth, O., Farkas, R., Bergmann, G., & Varró, D. (2020).

Diversity of graph models and graph generators in mutation
testing. Int. J. Softw. Tools Technol. Transf., 22(1), 57–78.

Semeráth, O., Nagy, A. S., & Varró, D. (2018). A graph solver
for the automated generation of consistent domain-specific
models. In ICSE (pp. 969–980). ACM.

Semeráth, O., & Varró, D. (2017). Graph Constraint Evaluation
over Partial Models by Constraint Rewriting. In ICMT (pp.
138–154).

Semeráth, O., Vörös, A., & Varró, D. (2016). Iterative and
incremental model generation by logic solvers. In FASE (pp.
87–103). Springer.

Shah, S. M. A., Anastasakis, K., & Bordbar, B. (2009). From
UML to Alloy and back again. In Modevva ’09: Proceedings
of the 6th international workshop on model-driven engineer-
ing, verification and validation (pp. 1–10). ACM.

Singh, G., Püschel, M., & Vechev, M. (2018). A practical
construction for decomposing numerical abstract domains.
Proc. ACM Program. Lang., 2(POPL). (Article no. 2)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drech-
sler, R. (2010). Verifying UML/OCL models using boolean
satisfiability. In Date’10 (p. 1341-1344). IEEE.

Soltana, G., Sabetzadeh, M., & Briand, L. C. (2017). Synthetic
data generation for statistical testing. In ASE (pp. 872–882).

Soltana, G., Sabetzadeh, M., & Briand, L. C. (2020, April).
Practical constraint solving for generating system test data.
ACM Trans. Softw. Eng. Methodol., 29(2).

Torlak, E., & Jackson, D. (2007). Kodkod: A relational model
finder. In Tacas (p. 632-647). Springer.

Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., &
Ujhelyi, Z. (2016). Road to a reactive and incremental model
transformation platform: three generations of the VIATRA
framework. Software and Systems Modeling, 15(3), 609–629.

Varró, D., Semeráth, O., Szárnyas, G., & Horváth, Á. (2018).
Towards the automated generation of consistent, diverse, scal-
able and realistic graph models. In Graph transformation,
specifications, and nets - in memory of hartmut ehrig (Vol.
10800, pp. 285–312). Springer.

Xcore [Computer software manual]. (2020). (https://wiki
.eclipse.org/Xcore)

About the authors
Kristóf Marussy is a PhD student at the Department of Mea-
surement and Information Systems at Budapest University of
Technology and Economics. He is also a research assistant at
the MTA Lendület Cyber-Physical Systems Research Group.
His research interest include the modeling and analysis of extra-
functional properties of cyber-physical systems, and the synthe-
sis of reliable architectures. He participated in research visits
at the University of L’Aquila and McGill University. You can
contact the author at marussy@mit.bme.hu or visit https://
inf.mit.bme.hu/en/members/marussyk.

Oszkár Semeráth is a research fellow at Budapest University of
Technology and Economics and MTA Lendület Cyber-Physical

Systems Research Group. His research focuses on modeling
tools, logic solvers and graph generation, he is the main devel-
oper of the VIATRA Solver graph generator framework. His
results were published in a book chapter, 4 journal papers with
impact factor, in 17 conference papers, and won IEEE/ACM
best paper award at the MODELS 2013 conference. You can
contact the author at semerath@mit.bme.hu or visit https://
inf.mit.bme.hu/en/members/semeratho.

Aren A. Babikian is a PhD student at the McGill University.
His research focuses on using model generation techniques for
the safety assurance of cyber-physical system and their design
tools. He recently published a related paper as first author
at the FASE 2020 conference. You can contact the author at
aren.babikian@mcgill.ca or visit http://arenbabikian
.github.io.

Dániel Varró is a full professor of software engineering at
McGill University and at Budapest University of Technology
and Economics. He is also a research chair of the MTA Lendület
Cyber-Physical Systems Research Group. He is a co-author of
more than 170 scientific papers with seven Distinguished Pa-
per Awards, and two Most Influential Paper Award. He serves
on the editorial board of the Software and Systems Modeling
(Springer) and Journal of Object Technology journals. He has
been a program committee co-chair of FASE 2013, ICMT 2014,
SLE 2016 and MODELS 2021 conferences. He is a co-founder
of the VIATRA model query and transformation framework, and
IncQuery Labs Ltd., a technology-intensive Hungarian company.
You can contact the author at daniel.varro@mcgill.ca.

18 Marussy et al.

https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xcore
mailto:marussy@mit.bme.hu?subject=Your paper "A specification language for consistent model generation based on partial models"
https://inf.mit.bme.hu/en/members/marussyk
https://inf.mit.bme.hu/en/members/marussyk
mailto:semerath@mit.bme.hu?subject=Your paper "A specification language for consistent model generation based on partial models"
https://inf.mit.bme.hu/en/members/semeratho
https://inf.mit.bme.hu/en/members/semeratho
mailto:aren.babikian@mcgill.ca?subject=Your paper "A specification language for consistent model generation based on partial models"
http://arenbabikian.github.io
http://arenbabikian.github.io
mailto:daniel.varro@mcgill.ca?subject=Your paper "A specification language for consistent model generation based on partial models"

A. Grammar of the configuration language
Below we provide a grammar for our proposed configuration
language in a form that suitable for illustrative purposes, but
is not context-free. For a slightly more complex form that
is suitable for implementing a parser, we refer to our imple-
mentation available at https://github.com/viatra/
VIATRA-Generator.

⟨id-fragment⟩ ::= (a · · · z | A · · · Z | _)
(a · · · z | A · · · Z | _ | 0 · · · 9)∗

⟨id⟩ ::= ⟨id-fragment⟩ (::⟨id-fragment⟩)∗

⟨integer⟩ ::= (-)? (0 · · · 9)+

⟨real⟩ ::= (-)? (0 · · · 9)+ (.(0 · · · 9)+)?

⟨object-id⟩ ::= ⟨named-obj-id⟩ | ⟨unnamed-obj-id⟩

⟨char⟩ ::= any Unicode character except '

⟨named-obj-id⟩ ::= '⟨char⟩+'

⟨unnamed-obj-id⟩ ::= ⟨id⟩

⟨relation-id⟩ ::= ⟨builtin-rel-id⟩ ▷ built-in relation

| ⟨base-rel-id⟩ ▷ base relation

| ⟨predicate-id⟩ ▷ defined predicate

⟨builtin-rel-id⟩ ::= exists | equals

| domain | data | int | real

⟨base-rel-id⟩ ::= ⟨id⟩

⟨predicate-id⟩ ::= ⟨id⟩

⟨metric-id⟩ ::= ⟨id⟩

⟨assertion⟩ ::= ⟨ground-rel-use⟩: ⟨logic-value⟩.
▷ relation assertion

| ⟨ground-term⟩: ⟨interval⟩.
▷ value assertion

| (? | !)? ⟨ground-rel-use⟩.
▷ brief relation assertion

| ⟨ground-metr-use⟩: ⟨interval⟩.
▷ metric assertion

⟨ground-rel-use⟩ ::=
⟨relation-id⟩((⟨ground-term⟩(, ⟨ground-term⟩)∗)?)

▷ relation atom with ground arguments

⟨ground-term⟩ ::= ⟨object-id⟩ ▷ partial model node

| ⟨int⟩ | ⟨real⟩ | ⟨interval⟩
▷ integer, real or interval literal

| * ▷ all partial model nodes

⟨logic-value⟩ ::= true | false | unknown | error
▷ 4-valued logic values

⟨interval⟩ ::= [⟨lower-bound⟩, ⟨upper-bound⟩]
▷ non-empty interval literal

| empty ▷ empty interval literal

⟨lower-bound⟩ ::= ⟨real⟩ | -inf

⟨upper-bound⟩ ::= ⟨real⟩ | +inf

⟨default-assertion⟩ ::= default ⟨assertion⟩

⟨predicate-def ⟩ ::= ⟨pred-def-core⟩
▷ basic form of predicate definition without any modifiers

| error ⟨pred-def-core⟩
▷ error predicate definition

| functional ⟨pred-def-core⟩
▷ functional predicate definition

⟨pred-def-core⟩ ::=
⟨predicate-id⟩((⟨param⟩(, ⟨param⟩)∗)?) :- ⟨disjunction⟩.

⟨param⟩ ::= ⟨var-id⟩ ▷ parameter variable

| ⟨relation-id⟩ ⟨var-id⟩ ▷ typed parameter

⟨disjunction⟩ ::= ⟨conjunction⟩ (; ⟨conjunction⟩)∗

⟨conjunction⟩ ::= ⟨literal⟩ (, ⟨literal⟩)∗

⟨literal⟩ ::= ⟨atom⟩ ▷ positive atom

| !⟨atom⟩ ▷ negative atom

⟨atom⟩ ::= ⟨logic-value⟩ ▷ 4-valued logic constant

| ⟨relation-use⟩ ▷ relation application

| ⟨relation-id⟩+(⟨term⟩, ⟨term⟩)
▷ transitive closure

| ⟨relation-id⟩*(⟨term⟩, ⟨term⟩)
▷ reflexive transitive closure

| ⟨metric-use⟩ in ⟨interval⟩
▷ metric check

| ⟨term⟩ == ⟨named-object-id⟩
▷ find by name

| ⟨metric-use⟩ ⟨comp-op⟩ ⟨real⟩
▷ comparison of metric value

⟨relation-use⟩ ::= ⟨relation-id⟩((⟨term⟩(, ⟨term⟩)∗)?)

⟨metric-use⟩ ::= ⟨metric-id⟩((⟨term⟩(, ⟨term⟩)∗)?)

⟨unnamed-err⟩ ::=
error((⟨param⟩(, ⟨param⟩)∗)?) :- ⟨disjunction⟩.

▷ unnamed error predicate definition

⟨functional-decl⟩ ::= functional ⟨base-relation-id⟩.
▷ functional base relation declaration

⟨comp-op⟩ ::= =:= | =!= | <= | < | >= | >

⟨metric-def ⟩ ::=
⟨metric-id⟩((⟨param⟩(, ⟨param⟩)∗)?) := ⟨metric-expr⟩.

▷ metric definition

⟨metric-expr⟩ ::= ⟨real⟩ ▷ number literal

| ⟨term⟩ ▷ value of data node

| ⟨metric-use⟩ ▷ metric application

| ⟨unary-op⟩ ⟨metric-expr⟩
▷ unary operation

A specification language for consistent model generation based on partial models 19

https://github.com/viatra/VIATRA-Generator
https://github.com/viatra/VIATRA-Generator

| ⟨metric-expr⟩ ⟨binary-op⟩ ⟨metric-expr⟩
▷ binary operation

| ⟨metric-expr⟩ as int
▷ cast (floor function)

| (⟨metric-expr⟩)
▷ parenthesized expression

| if ⟨relation-use⟩ then ⟨metric-expr⟩
else ⟨metric-expr⟩
▷ conditonal expression

| ⟨relation-use⟩ -> ⟨metric-expr⟩
(; ⟨relation-use⟩ -> ⟨metric-expr⟩)∗

▷ switch expression

| ⟨aggr-op⟩{⟨metric-use⟩|⟨relation-use⟩}
▷ aggregation expression

| count { ⟨relation-use⟩ }
▷ count aggregation expression

| ⟨relation-use⟩ ▷ functional application

⟨binary-op⟩ ::= + | - | * | / | ^

⟨unary-op⟩ ::= + | -

⟨aggr-op⟩ ::= sum | min | max | single

⟨ground-metr-use⟩ ::=
⟨metrc-id⟩((⟨ground-term⟩(, ⟨ground-term⟩)∗)?)

▷ metric atom with ground arguments

⟨scope-decl⟩ ::= scope ⟨relation-id⟩ ⟨comp-op⟩ ⟨int⟩.
▷ scope declaration

⟨containment-decl⟩ ::= containment ⟨base-relation-id⟩.
▷ containment relation declaration

⟨root-decl⟩ ::= root ⟨base-relation-id⟩.
▷ root relation declaration

B. Example configuration file
To showcase the usability of our configuration language, we
present a formalization of the case study from section 2 below.

1 % Xcore −style metamodel definition
2

3 class InterferometryMission {
4 contains GroundStationNetwork [1, 1]

groundStationNetwork
5 contains Spacecraft [2, +inf] spacecraft
6 int observationTime
7 }
8

9 abstract class CommunicatingElement {
10 contains CommSubsystem [1, 2] commSubsystem
11 }
12

13 class GroundStationNetwork extends
CommunicatingElement {}

14

15 abstract class Spacecraft extends
CommunicatingElement {

16 contains Payload[0, 1] payload
17 }
18

19 abstract class CubeSat extends Spacecraft {}

20 class CubeSat3U extends CubeSat {}
21 class CubeSat6U extends CubeSat {}
22 class SmallSat extends Spacecraft {}
23

24 abstract class Payload {}
25 class InterferometryPayload extends Payload {}
26

27 class CommSubsystem {
28 refers CommSubsystem [0, 1] target
29 refers CommunicationType [1, 1] type
30 int frequency
31 }
32

33 enum CommunicationType {
34 KaBand ,
35 XBand ,
36 UHFBand
37 }
38

39 % Well −formedness constraints (excerpt)
40

41 functional directCommunicationLink(
42 Spacecraft from ,
43 CommunicatingElement to) :−
44 commSubsystem(from , fromComm),
45 target(fromComm , toComm),
46 commSubsystem(to, toComm).
47

48 error noLinkToGroundStation(Spacecraft s) :−
49 g == 'gs', !directCommunicationLink +(s, g).
50

51 error communicationLoop(
52 CommunicatingElement e) :−
53 directCommunicationLink +(e, e).
54

55 error cubeSatWithKaAntenna(CubeSat s) :−
56 commSubsystem(s, comm), ka == 'KaComm ',
57 type(comm , ka).
58

59 % Cost metric
60

61 missionCost(InterferometryMission m) :=
62 sum { spacecraftCost(s) | spacecraft(m, s) }
63 + 100000.0 ∗ observationTime(m).
64

65 spacecraftCost(Spacecraft s) :=
66 basePrice(s) ∗ (kindCount(s) ^ (−0.25))
67 + payloadCost () + commSubsysCost ().
68

69 basePrice(Spacecraft s) :=
70 CubeSat3U(s) −> 250000.0
71 ; CubeSat6U(s) −> 750000.0
72 ; SmallSat(s) −> 3000000.0.
73

74 kindCount(Spacecraft s) :=
75 CubeSat3U(s) −> count { CubeSat3U(_) }
76 ; CubeSat6U(s) −> count { CubeSat6U(_) }
77 ; SmallSat(s) −> count { SmallSat(_) }.
78

79 hasPayload(Spacecraft s) := payload(s, _).
80

81 payloadCost(Spacecraft s) :=
82 if hasPayload(s) then 50000.0 else 0.0.
83

84 hasAdditionalCommSubsys(Spacecraft s) :=
85 commSubsystem(s, comm1),
86 commSubsystem(s, comm2),
87 !equals(comm1 , comm2).
88

89 % The cost of the first CokmSubsystem is
90 % included in the price of the Spacecraft.
91 commSubsysCost(Spacecraft s) :=

20 Marussy et al.

92 if hasAdditionalCommSubsys(s)
93 then 100000.0 else 0.0.
94

95 % Objects and relations
96

97 InterferometryMission(o1).
98 observationTime(o1, [1, 5]).
99 GroundStationNetwork('gs').

100 groundStationNetwork(o1 , 'gs').
101 CommSubsystem('gsc').
102 commSubsystem('gs', 'gsc').
103 type('gsc', 'KaComm ').
104 frequency('gsc', 3000).
105 !commSubsystem('gsc', CommSubsystem ::new).
106 CubeSat3U(o2).
107 spacecraft(o1 , o2).
108 ?CommSubsystem(o3).
109 commSubsystem(o2, o3).
110 frequency(o3, [3000 , +inf]).
111 missionCost(o1): [0.0, 500000000.0].
112

113 % Scope definitions
114

115 scope domain >= 16.
116 scope domain <= 32.
117 scope Spacecraft =:= 12.

C. Regularity of partial models

Definition 11. A partial model P = ⟨OP, IP,VP⟩ is struc-
turally regular if it satisfies the following conditions:

S1. ∀o ∈ OP : IP(exists)(o) > false
▷ non-existing objects are omitted

S2. ∀o ∈ OP : IP(equals)(o, o) > false
▷ the equals relation is reflexive

S3. ∀o1, o2 ∈ OP :
IP(equals)(o1, o2) = IP(equals)(o2, o1)

▷ equals is symmetric

S4. ∀o1, o2 ∈ OP :
(o1 ̸≡ o2) ⇒ IP(equals)(o1, o2) < true

▷ if two objects are different, then they cannot be equal

S5. ∀o ∈ OP : IP(domain)(o) = ¬4IP(data)(o)
▷ objects are partitioned into domain and data objects

Definition 12. A partial model P = ⟨OP, IP,VP⟩ is naming
regular if it satisfies the following conditions:

N1. ∀o ∈ OP, 'N' ∈ Σ : IP('N')(o) ≤ IP(domain)(o)
▷ named objects must be domain objects

N2. ∀o ∈ OP, 'N' ∈ Σ : IP('N')(o) ̸= unknown
▷ names cannot be uncertain

N3. ∀o1, o2 ∈ OP, 'N' ∈ Σ : [IP('N')(o1) ⊒ true ∧
IP('N') ⊒ true] ⇒ (o1 ≡ o2)
▷ any name 'N' may only belong to a single object

N4. ∀o ∈ OP, 'Ni', 'Nj' ∈ Σ : [IP('Ni')(o) ⊒ true ∧
IP('Nj')(o) ⊒ true] ⇒ ('Ni' = 'Nj')

▷ an object cannot have more than one name

Definition 13. A partial model P = ⟨OP, IP,VP⟩ is data
regular if it satisfies the following conditions:

D1. ∀o ∈ OP :
[IP(data)(o) ⊒ false] ⇒ [VP(value)(o) = ∅]

▷ only data objects have a numerical value

D2. ∀o ∈ OP :
IP(data)(o) ⊒ IP(real)(o) ∨4 IP(int)(o)

▷ data objects are either real or int

D3. ∀o ∈ OP : [IP(real)(o) ∧4 IP(int)(o)] < true
▷ real and int are disjoint

D4. ∀o ∈ OP : [IP(int)(o) ⊒ true] ⇒
[VP(value)(o) ∩ Z ̸= ∅ ∨ VP(value)(o) = ∅]

▷ int objects are bound to whole numbers

D5. ∀o1, o2 ∈ OP, x ∈ R :[
IP(real)(o1) ⊒ true∧ IP(real)(o2) ⊒ true ∧
VP(value)(o1) = VP(value)(o2) = [x, x]

]
⇒

(o1 ≡ o2)
▷ each real number is represented by a unique object

D6. ∀o1, o2 ∈ OP, x ∈ R :[
IP(int)(o1) ⊒ true∧ IP(int)(o2) ⊒ true ∧
VP(value)(o1) = VP(value)(o2) = [x, x]

]
⇒

(o1 ≡ o2)
▷ each int number is represented by a unique object

D. Parsing and serialization
A textual description of a model generation problem simul-
taneously encodes a signature ⟨Σ, α⟩, a partial model P =
⟨OP, IP,VP⟩ and a theory T. The input language from sec-
tion 3 can be parsed as follows:

1. First, syntactic sugars are removed from the input by trans-
lating them back into core concepts. This simplifies the
input for the subsequent steps.

2. Symbols are gathered from the input. Base relations are
turned into base relation symbols R1, . . . Rm, relations with
a corresponding predicate definition are turned into pred-
icate symbols P1, . . . , Pℓ, names of named objects are
turned into object name symbols 'N1', . . . , 'Nt' and met-
rics are turned into metric symbols M1, . . . , Mu. Together
with the build-in symbols, these form the symbols Σ of the
signature. The arity α(s) of each symbol s ∈ Σ is set to
the number of arguments in the input text.

3. To obtain OP, we add an object ox for every unnamed
object identifier x and an object o'N' for every object name
'N' in the input problem.

4. We initialize IP by setting IP('N')(o'N') = true for
each object name 'N'. For all other OP ∋ o′ ̸= o'N',
IP('N')(o′) = false.

A specification language for consistent model generation based on partial models 21

5. For all relation symbols r ∈ ΣR and objects o1, . . .
. . . , oα(r) ∈ OP, we gather all assertions of the form
r(o1, · · · , oα(r)) : X. and set IP(r)(o1, . . . , oα(r)) =⊕{X | r(o1, · · · , oα(r)) : X.}.

6. For all objects o ∈ OP, we gather all value assertions of
the form o: iv. and set VP(value)(o) =

⋂{iv | (o: iv.}.
If there are no such assertions, we set VP(value)(o) =
[−∞,+∞] instead.

7. For all metric symbols M ∈ ΣM and objects o1, . . . , oα(M) ∈
OP, we gather all value assertions of the form
M(o1, · · · , oα(M)) : iv. and set VP(M)(o1, . . . , oα(M)) =⋂{iv | M(o1, · · · , oα(M)) : iv.}. If there are no such asser-
tion, we set VP(M)(o1, . . . , oα(M)) = [−∞,+∞] instead.

8. Lastly, we gather all predicate and metric definitions into
the theory T.

D.1. Regularization
After parsing the textual description of a model generation
problem, the resulting partial model P may not necessarily be
regular. Hence, a regularization procedure is applied to obtain
an equivalent partial model P′ as a refinement P ⊑ P′ that is
regular. To simplify presentation, in the steps below, P always
refers to the output of the previous step. Thus, P serves as the
input of the currently executed step, while P′ is the output of
the current step.

1. Naming regularity conditions N2–4 are satisfied by con-
struction after parsing. To ensure N1, we only need to set
IP′(domain)(o) = IP(domain)(o) ∨4 IP('N')(o) for
all o ∈ OP and 'N' ∈ Σ.

2. Structural regularity is enforced as follows:

S1. Surely non-existent (IP(exists)(o) = false) ob-
jects are removed.

S2. We set IP′(equals)(o1, o2) = error for all o1,
o2 ∈ OP where IP(equals)(o1, o2) = false.

S3. For all o1, o2 ∈ OP, we set IP′(equals)(o1, o2) =
IP(equals)(o1, o2)⊕IP(equals)(o2, o1) in order
to to make equals symmetric.

S4. Surely equal objects (IP(equals)(o1, o2) = true)
objects are merged. While merging objects, rele-
vant interpretations of relational symbols are com-
bined with the ⊕ information merge operator
(IP′(r)(o1,2) = IP(r)(o1)⊕ IP(r)(o2)). Similarly,
interpretations of metric symbols are combined with
the ∩ interval intersection operator.

S5. We set

IP′(data)(o) = IP(data)(o)

⊕¬4IP(domain)(o)
⊕ [IP(real)(o)

∨4 IP(int)(o)],

IP′(domain)(o) = ¬4IP′(data)(o)

for all o ∈ OP.

3. Data regularity is enforced as follows:

D1. For all objects o ∈ OP with IP(data)(o) ⊒ false,
we set VP′(value)(o) = ∅.

D2. When we enforced S5, D2 was also enforced as a
side effect.

D3. If IP(real)(o) ∧4 IP(int)(o) = true for an ob-
ject o ∈ OP, we set all of real, int, data and
domain for o to error.

D4. If IP(int)(o) ⊒ true and VP(value)(o) ∩ Z =
∅ for some object o, we set VP(value)(o) = ∅.

In order to enforce D5 and D6, we merge real and int
objects that are bound to the same numbers (similarly to
how we enforced S4).

Each of these steps are partial model refinements, hence the
ultimate output P′ is a refinement of the initial input P.

D.2. Serializing model generation problems
Serializing a partial model allows us to inspect the internal state
of model generators. Moreover, model generation can be paused
and its state can be saved to derive a new model generation
problem either equivalent to the original one, or extended with
new objects, assertions and constraints.

Regular partial models P and theories T over a signature
⟨Σ, α⟩ can be serialized into a textual description of a model
generation problem that, when parsed, gives rise to an identical
signature, partial model and theory.

1. For each named object o ∈ OP with name 'N'
(IP('N')(o) ⊒ true), o will be uniquely represented
by the name 'N'. For all other objects, we assign unique
identifiers xo.

2. For each relation symbol r ∈ ΣR and objects o1, . . . , oα(r),
an assertion r(o1, · · · , oα(r)) : IP(r)(o1, . . . , oα(r)). is
printed, where each o1 is represented either by its name or
by its unique identifier.

3. For each object o ∈ OP with IP(data)(o) ⊒ true, an
assertion o: VP(value)(o). is printed.

4. For each metric symbol M ∈ ΣM and objects o1, . . . , oα(M),
an assertion M(o1, · · · , oα(M)) : VP(M)(o1, . . . , oα(M)). is
printed.

5. Lastly, axioms of the theory T are printed as predicate
definitions and metric definitions.

22 Marussy et al.

