
Incremental View Model Synchronization Using Partial Models
Kristóf Marussya,b, Oszkár Semerátha,b, Dániel Varróa,b,c

aBudapest University of Technology and Economics,
Department of Measurement and Information Systems, Hungary

bMTA-BME Lendület Cyber-Physical Systems Research Group, Hungary
cMcGill University, School of Electrical and Computer Engineering, Canada

ABSTRACT

View models are abstractions of a set of source models derived by
unidirectional model transformations. In this paper, we propose a
view model transformation approach which provides a fully compo-
sitional transformation language built on an existing graph query
language to declaratively compose source and target patterns into
transformation rules. Moreover, we provide a reactive, incremen-
tal, validating and inconsistency-tolerant transformation engine
that reacts to changes of the source model and maintains an inter-
mediate partial model by merging the results of composable view
transformations followed by incremental updates of the target view.
An initial scalability evaluation of an open source prototype tool
built on top of an open source model transformation tool is carried
out in the context of the open Train Benchmark framework.

ACM Reference Format:

Kristóf Marussy, Oszkár Semeráth, Dániel Varró. 2018. Incremental View
Model Synchronization Using Partial Models. In ACM/IEEE 21th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS ’18), October 14–19, 2018, Copenhagen, Denmark. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3239372.3239412

1 INTRODUCTION

Complex industrial toolchains used for designing cyber-physical
systems frequently depend on various models on different levels
of abstraction. Abstract models [13] can be derived and synchro-
nized by view model transformations upon changes of one or more
underlying source models.

View synchronization challenges are addressed by using ei-
ther general purpose model transformation tools (e.g. ATL [33, 43],
ETL [37], Henshin [6], Viatra [56]), bidirectional model synchro-
nization (e.g. various TGG tools [24, 27, 40, 48] and QVTr [46]), or
dedicated view transformation techniques (e.g. View TGGs [5, 32],
Active Operations [7], Viatra Views [18], QuEST [23]).

To tackle complex scenarios, view model transformations are
desirably defined in a compositional way to reuse existing transfor-
mations without further changes. While sequential composition
(chaining) is widely supported, existing tools need to impose major
restrictions in case of parallel composition (merging) of target views.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239412

An ideal (forward only) view transformation engine is reactive (i.e. re-
acts to source model changes), target incremental (i.e. updates only
affected target elements), consistent (i.e. continuously maintains
a transformation relation between source and target models) and
validating (i.e. the target model is a valid, materializable instance
of the target language).

Currently, there is a significant trade-off in existing tools between
the expressiveness and compositionality of the view transformation
language, and the level of support for desirable features of the view
transformation engine. On the one hand, fully reactive behavior is
a challenge in itself supported by only few tools (e.g. [7, 43, 56]),
while incrementality, consistency and validity is provided at the
same time for very restrictive transformation languages. Practical
model transformation engines frequently fail to restore consistency
between models [53].

Our main contribution in the paper is a unidirectional view
transformation approach with a (1) a fully compositional view trans-
formation language, and (2) a reactive, incremental, validating and
inconsistency-tolerant transformation engine. The view transforma-
tion language explicitly reuses the Viatra Query Language [55]
to declaratively capture relevant source and view patterns by fol-
lowing the principles of ramification [39]. Moreover, inconsistency-
tolerant partial models (a generalization of partial models of [22, 57])
provide the conceptual core of the transformation engine.

The transformation engine reacts to aggregated changes of the
source model observed in the result set of graph queries (hence
reactive), then it builds and maintains a partial model as a knowl-
edge base with traceability links. Once the partial view model be-
comes a valid instance of the target metamodel (i.e. relevant aggre-
gated changes are observed in the knowledge base, and structural
constraints are respected), the target view model is incrementally
updated by providing a corresponding change (e.g. model delta, no-
tification or API call). Our engine is inconsistency tolerant in the
sense that inconsistencies are semantically persisted in the internal
knowledge base. This allows to keep a large fragment of the source
and view models in sync in case of inconsistent source changes and
provides hippocratic behavior (i.e. avoids the unnecessary deletion
and recreation of elements).

The transformation engine is implemented as a prototype tool [1]
and integrated into the open source Viatra transformation frame-
work [9]. Moreover, we carry out an initial scalability evaluation by
adapting an existing view model transformation from an industrial
research project (aiming to carry out dependability evaluation of
automotive designs) to the open Train Benchmark [54]. Artifacts
related to this paper are also available from [2].

https://doi.org/10.1145/3239372.3239412
https://doi.org/10.1145/3239372.3239412

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

Source Model (Rail)

r1: Route r2: Route

sw: Switch

sp1: Switch
Position

sp2: Switch
Position

positions

follows

positions

follows

Target Model
PN = (tr1||tr2)(Rail, Dep)

swUp
1

swDown
0

swFail

swRep

r1Up
1

r1Down0

r1Rep
r1SwFail

r2Up 1

r2Down0

r2Rep
r2SwFail

tr1

Source Model (Dep)

ma: FailureRepairModel

mb: Immediate
RepairModel

mc: Immediate
RepairModel

tr2

Trace (tr1 : Rail → PN): sw 7→ {swUp, swDown, swRep, swFail}, r1 7→ {r1Up,
r1Down, r1Rep}, r2 7→ {r2Up, r2Down, r2Rep}, sp1 7→ {swUp, swDown, r1Up,
r1Down, r1Rep, r1SwFail}, sp2 7→ {swUp, swDown, r2Up, r2Down, r2Rep, r2SwFail}
Trace (tr2 : Dep → PN): ma 7→ {swUp, swDown, swRep, swFail}, mb 7→ {r1Up,
r1Down, r1Rep}, mc 7→ {r2Up, r2Down, r2Rep}

Markers denote the trace of the nodes; multiple markers mean objects merged from
both view transformations.

Figure 1: Source and target models with traceability links.

2 A OVERVIEW OF COMPOSITIONAL VIEW

TRANSFORMATIONS

A view transformation Trg = tr (Src1, . . . , Srck) aims to derive a
target view model Trg as an abstraction of a set of source models
Src1, . . . , Srck . A tr is a mapping from source(s) to target models
typically with loss of information.

Moreover, in a typical view synchronization scenario, each tar-
get change is causally dependent on some (aggregate) change of
the source model (e.g. a model delta or notification upon model
update). This causal dependence can be captured by a match of a
view transformation rule in the source model which triggers the
simultaneous creation of respective target elements together with
some traceability links between source and target elements.

A motivating example. The running example of the paper is
adapted from an industrial project where formal dependability anal-
ysis of automotive models were carried out by composing two view
transformations: (1) PN = tr1(Aut) maps automotive component
models Aut to stochastic Petri nets PN [3], and (2) PN = tr2(Dep)
is a reusable mapping [12, 42] from a domain-independent depend-
ability modelDep to stochastic Petri nets. The target Petri net model
is defined as the (parallel) composition of the two transformations
PN = tr1 ∥ tr2(Aut,Dep) calculated over the two input models.

Due to IP restrictions of automotive models, we present the chal-
lenge using a public model of railway networks developed as part of
the Train Benchmark [54], a cross-technology macrobenchmark of
graph-based model query tools. A sample source and target model
are shown along with the traceability links in Fig. 1, while some
transformation rules will be illustrated later in Fig. 7.

2.1 Levels of compositional definitions

To categorize the levels of compositionality in view transforma-
tions, let us assume the existence of two view transformations, tr1
and tr2 and a single source model Src to simplify the discussion.
Transformations tr1 and tr2 can be composed in different ways.

In many practical scenarios [5, 29], chaining of view transfor-
mations is necessitated, which is a sequential composition of trans-
formations Trg = tr2 ◦ tr1(Src) = tr2(tr1(Src)) where tr2 takes the
output of tr1 as its source model, and the target model of this trans-
formation chain is the subsequent result of tr2. The definition of
sequential composition is supported in several tools [29, 44].

Given two existing view transformations Trg1 = tr1(Src) and
Trg2 = tr2(Src), another relevant aspect is parallel composition
Trg = tr1 ∥ tr2(Src) = tr1(Src) ⊕ tr2(Src) where the target model
is derived by merging (or gluing) the results of transformations
tr1 and tr2 both applied on the same source model Src. If the two
transformations are independent, the target model is the union of
the individual transformations, otherwise the aggregated result can
be computed e.g. by category-theoretical foundations [16, 19, 20].
Below, we briefly categorize the major assumptions for parallel
composition tr1 ∥ tr2 used in existing transformation tools.

(1) In the independent case, each target object is fully defined by
a single rule in one transformation, thus a union of target elements
can be taken without merge, i.e. Trg = tr1(Src)∪tr2(Src). Otherwise,
a new transformation tr3 needs to be written manually.

(2) In the serializable case, the parallel composition is turned
into a sequential composition where one transformation (e.g. tr1)
is taken as-is (called primary) while the other transformation tr2
(called secondary) needs to be manually changed to tr ′2, i.e.
tr1 ∥ tr2(Src) = tr ′2(tr1(Src), Src)) or tr

′
1(tr2(Src), Src)).

(a) Certain transformation languages (e.g. ATL [33]) restrict
primary rules, i.e. at most one serialization tr ′2(tr1(Src), Src)) or
tr ′1(tr2(Src), Src)) can exist. In ATL, outgoing references of an
object can only be defined in a primary rule (to ensure multiplic-
ity constraints in the target language), thus a static check will
prevent serializing the transformations in the wrong way.

(b) Other serializable view transformation approaches [9, 29]
are unrestricted to allow both serializations tr ′2(tr1(Src), Src)) and
tr ′1(tr2(Src), Src)), but one of the transformations still needs to
be adapted to take the output of the other (instead of Src).
(3) Fully compositional view transformation approaches allow to

compose tr1 and tr2 as tr1 ∥ tr2(Src) = tr1(Src) ∪? tr2(Src) without
changing the transformations by using some model merge operator
∪? to weave the target models of individual transformations into a
joint result.

(a) In ID-based tr1 ∥ tr2(Src) = tr1(Src) ∪ID tr2(Src) composi-
tion, rules assign the same ID to objects that need to be merged
in the final target model. The ID attribute can be selected from
the metamodel intrusively [46] or added by augmentation [39].

(b) Relation-based tr1 ∥д tr2(Src) = tr1(Src) ∪д(Src) tr2(Src)
composition can mark unrelated objects constructed separately
by transformations tr1 or tr2 to be merged. The merge operation
is a parameter, i.e. it can be specified as a categorial colimit with
a suitable reference or connection model [19, 21, 47], by direct
mappings [16], or by graph bisimulation [15].

2.2 Properties of view transformation engines

A view transformation engine Out(i) = exec(tr, In(i)) repeatedly
executes a transformation tr at a given logical time point i on an
input In(i) (which can be the source model Src(i) or a delta ∆(i)

Src) to
derive an outputOut(i) (the targetmodel Trg(i) or a delta∆(i)

Trg) while

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Table 1: Comparison of view model transformation techniques.

Engine properties

Parallel composition React. Incr. Cons. Valid. Comment

Our approach relation-based R • IT •

Reactive ATL [34, 43] independent R • C • Restrictions in source and trace language
TGG Virtualized View [32] independent R • C ◦ Only single node or reference in rule target side, limited NAC support
TGG Materialized View [5] independent R • C • Only single node or reference in rule target side, limited NAC support
Viatra Views [18] independent R • C • Only single node or reference in rule target side
QueST [23] independent D • C • Only single node or reference in rule target side
Incremental QVTr [50] restricted serializable R • ? ? Cons., valid. difficult to determine due to QVTr semantic issues [26, 52]
EMF Views [14] independent NR ◦ C ◦ Infers target metamodel
Active Operations [7] restricted serializable R • C ◦ Transformation also defines target metamodel
Hearnden et al. [28] restricted serializable D • IT ◦ Produces deduction tree tree as target model
ATL (no imperative code) [33] restricted serializable NR ◦ C • Restrictions on outgoing references in non-primary rules
ATL (+imperative code) [33] serializable NR ◦ NC • No consistency checking for imperative actions
eMoflon TGG [40, 41] restricted serializable D • C/A • Restrictions for negative application conditions (NAC)
Viatra [29, 56] serializable R • NC • No consistency checking for imperative actions
QVTr [46] M2M [58] ID-based NR ◦ ? ? Cons., valid. difficult to determine due to QVTr semantic issues [26, 52]
Epsilon ETL [37] + EML [38] relation-based NR ◦ NC • Merge operators for composition in separate language
JTL [17] serializable D ◦ C/A • No answer if the target cannot satisfy constraints
RAMification [39, 45] ID-based NR ◦ C ◦ Metamodel constraints are relaxed
GRoundTram, ATLGT [30, 31] relation-based D • C ◦ Graph bisimulation based data model, non-EMF
BiGUL [36] relation-based NR ◦ C/A • PutBack-based functional programming, may be adapted to EMF [4]
Legend: R reactive, D delta-based, NR non-reactive (batch); C consistent, C/A consistent or aborts, NC non-consistent, IT inconsistency tolerant; • yes, ◦ no

(a) maintaining the consistency relation Trg = tr(Src) between the
source and target models and (b) keeping the target model a valid
instance of the target language (Trg ⊨ MMT).

(1) A batch engine takes the entire source model at any step:
Out(i) = exec(tr, Src(i)). A delta-based engine takes a model change
as input, but it executes on-demand: Out(i) = exec(tr, Src(i−1),∆(i)

Src).
A reactive engine executes in response to source model changes [11,
43] by receiving deltas asmodel notifications:Out(i) = exec(tr,∆(i)

Src).
Delta-based and reactive engines load the source model as a large
delta upon initialization.

(2) An incremental engine updates only those target elements
which are affected by a specific source model change, that is ∆(i)

Trg =

Out(i) = exec(tr, In(i)), thus the new target model is obtained by
applying this delta: Trg(i) = Trg(i−1) + ∆(i)

Trg . A non-incremental
engine derives the new target model from scratch:
Trg(i) = Out(i) = exec(tr, In(i−1)).

(3) A consistent engine continuously enforces consistency (cor-
rectness) constraints between source and target elements: ifOut(i) =
exec(tr, In(i)) then Trg(i) = tr(Src(i)). A non-consistent engine does
not guarantee these constraints if the transformation rules are con-
flicting with each other (e.g. in case of a specific source change).

(4) A validating engine derives the view model as a valid in-
stance model of the target metamodel (or viewtype) where all meta-
model constraints (e.g. aggregation, multiplicity) are satisfied: if
Trg(i) = exec(tr, In(i)) then Trg(i) ⊨ MMT . Checking these struc-
tural constraints of the target metamodel is out of scope for a
non-validating engine, thus Trg(i) ⊭ MMT . A validating engine can
be used for both materialized and virtualized viewtypes [13].

Fully compositional view transformations need to face the con-
ceptual challenge that while enforcing the consistency between
the source and target models, one may easily violate the structural
constraints imposed by a metamodeling framework like EMF [51].

2.3 Related work

A desired view transformation approach offers a fully compositional
language and a reactive, incremental, consistent and validating
engine but no transformation tools currently exist which support
all these properties. Our overview of (the significant amount) of
related work primarily focuses on existing transformation tools by
categorizing the level of support (1) for parallel compositionality
in transformation languages, and (2) for desirable transformation
engine properties in Table 1. For space considerations, we highlight
only the typical restrictions found in the context of multiple tools.

Imperative transformation approaches reactively build the target
model (like imperative ATL, Viatra or ETL) but they do not pro-
vide consistency guarantees, i.e. certain target models may not be
consistent with a source model. Unfortunately, such inconsistencies
can propagate to future stages of the transformation.

Bidirectional model synchronization tools (like different TGG
implementations or JTL) either guarantee consistency or they abort
the execution of the transformation. These tools offer a certain level
of serializability, but they are not fully compositional.

Dedicated view transformation approaches (like TGGViews, Via-
tra Views, Reactive ATL) use a restricted transformation language
(wrt. their regular transformation counterpart) to provide desir-
able engine behavior. However, parallel composition of different
transformations is very limited.

Most existing fully compositional approaches (like QVTr, ramifi-
cation, Epsilon with combined ETL and EML languages) are neither
reactive nor incremental and only EML is validating. Only GRound-
Tram and ATLGT support target incrementality and delta-based
source incrementality, but over a custom (non-EMF compliant)
model representation. The closest approaches to ours are [17, 28]
as they build a knowledge base based on first order logic and target
models are derived by logical inference, but these approaches are
not fully compositional.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

petrinet

railway dependability

RailwayElement

Route

EBoolean
 = false

Switch

tion :
Position =
FAILURE

SwitchPosition

Position =
FAILURE

ErrorModel

FailureRepair
Model

ImmediateRepair
Model

[0..1] route

[0..*] follows
[0..1] target[0..*] positions

[1..1] railwayElement

Arc

kind : ArcKind

ArcKind

IN OUT
ImmediatePlace

tokens : EInt

Tran

PetriNTran
Timed
Tran

[1..1] place [1..*] arcs

[1..1] tran

Figure 2: Two source and one target metamodels.

Our work provides a view transformation approach with (1) a
fully compositional transformation language built on top of an ex-
isting declarative query language, and (2) a transformation engine
which is reactive, incremental, validating and inconsistency-tolerant
at the same time. The inconsistency-tolerant engine is a relaxed
version of a consistent engine where Trg(j) , tr(Src(j))may happen
after some conflicting source model changes Out(j) = exec(tr,∆(j)

Src),
but all other desirable properties are preserved. Most of the tar-
get model satisfyingMMT is preserved, while inconsistencies are
explicitly highlighted by the framework. Lastly, by delaying notifi-
cations to engine, reactive behavior can be optionally replaced with
delta-based processing.

3 INCONSISTENCY-TOLERANT PARTIAL

MODELS

Our view transformation technique builds on inconsistency-tolerant
partial models which store inconsistent and unknown information
in models by generalizing the merging of inconsistent and incom-
plete views in conceptual models [47]. This section provides theo-
retical foundations based on Belnap-Dunn 4-valued logic [8, 35].

3.1 Preliminaries: Foundations of metamodels

A metamodel contains the main concepts and relations of a domain,
and captures the basic structure of the models. Formally, a meta-
model defines a signature Σ = {C1, . . . ,Ct ,R1, . . . ,Rr ,∼}, which is
a vocabulary of unary type predicate symbols {Ci }ti=1 defined for
each class, binary relation predicate symbols {Rj }rj=1 defined for
each reference and attribute, and additionally, an equivalence rela-
tion ∼. In our running example, Fig. 2 defines two source (railway
and dependability) and one target metamodels (petrinet).

Metamodeling tools impose additional structural constraints on
instance models to enforce a basic structure. In the EclipseModeling
Framework (EMF) [51], violating such a structural constraint would
prevent the materialization (saving) of a model.
Type hierarchy. A metamodel defines a type system by supertype
relations and abstract classes. For each object o, there shall be a
single class C, where (i) C is non-abstract, and (ii) o is an instance
of C′ when C′ is a supertype of C. In the petrinet metamodel in
Fig. 2, an abstract Tran is either an ImmediateTran or a TimedTran.

1
1/2

0

⊑

⊑

⊑

⊑

(X ⊑ Y) B (X = 1/2) ∨ (X = Y) ∨ (Y =)

(a) Lattice of logical values.

X ¬X
0 1
1 0
1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1 1
1/2 1/2 1 1/2 1
 1 1

∧ 0 1 1/2
0 0 0 0 0
1 0 1 1/2
1/2 0 1/2 1/2 0
 0 0

⊕ 0 1 1/2
0 0 0
1 1 1
1/2 0 1 1/2

(b) Logic connectives (¬, ∨, ∧) and information merge (⊕).

Table 2: Belnap-Dunn 4-valued logic.

Type compliance. The metamodel restricts the classes C1, C2 of
objects at the ends of a reference R: ∀o1,o2 : R(o1,o2) ⇒ C1(o1) ∧
C2(o2). E.g., the target of a tran reference has to be a Tran.
Multiplicity constraints are placed on upper bounds on the num-
ber of references adjacent to an object: ∀o,o1,o2 : R(o,o1) ∧R(o,o2)
⇒ o1 ∼ o2. For example, an Arc can have only one tran.
Inverse relations. Some references R and R′ always occur in pairs:
∀o1,o2 : R(o1,o2) ↔ R′(o2,o1). See e.g., tran and arcs.
Containment hierarchy. EMFmodels are arranged in a strict tree
hierarchy via the containment references. EMF restricts objects not
to (i) have multiple containers, and (ii) form circles via containment
references. E.g., an Arc cannot be contained by multiple Trans.
Equivalence relation ∼ is reflexive: ∀o : o ∼ o, symmetric: ∀o1,o2 :
o1 ∼ o2 ⇒ o2 ∼ o1, and transitive: ∀o1,o2,o3 : o1 ∼ o2 ∧ o2 ∼ o3 ⇒
o1 ∼ o3. In a regular instance model, objects are different from one
other, but partial models may have explicit ∼ relations.

3.2 Inconsistency-tolerant partial models

For a flexible composition of parallel view transformations, we
propose inconsistency-tolerant partial models as a generalization
of partial models [22, 57] that explicitly represents inconsistencies
and uncertain parts of view models.

Belnap-Dunn logic. As a semantic basis, we use the 4-valued
Belnap-Dunn logic [8] with regular true and false values (denoted
by 1 and 0, respectively), an unknown value (1/2) to represent un-
specified properties (which can be either 1 or 0), and an inconsistent
value () to represent errors where both 1 and 0 values simultane-
ously hold. An information ordering relation ⊑ is introduced (see
Fig. 2a) where is larger than 1 and 0 while 1/2 is less than 1 and
0. Operation X ⊕ Y denotes the merge of information values by
taking the maximum of two logic symbols with respect to ⊑. The
4-valued truth table for basic logic connectives is listed in Fig. 2b.

Inconsistency-tolerant partial models. A partial model P = ⟨ObjP ,
IP ⟩ is a 4-valued logic structure of Σ, where ObjP is a finite set of
objects, and IP is a 4-valued interpretation of the relation symbols
in Σ with:

• IP (Ci) : ObjP → {0, 1, 1/2, } for each Ci ;
• IP (Ri) : ObjP × ObjP → {0, 1, 1/2, } for each Rj , and
• Ip (∼) : ObjP × ObjP → {0, 1, 1/2, } for equivalence relation.
A partial model P is concrete, if (i) there are only 0 and 1 values

in IP , and (ii) o1 ∼ o2 iff o1 and o2 are the same element of ObjP . A
concrete partial model can be interpreted as an instance modelM

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

swRep1
Place = 1/2
Tran = 1
TimedTran = 1/2
ImmediateTran=1/2 swRep

Place = 1/2
Tran = 1
TimedTran = 1
ImmediateTran=1/2

swRep
Place = 0
Tran = 1
TimedTran = 1
ImmediateTran=0

swRep2
Place = 1/2
Tran = 1/2
TimedTran = 1
ImmediateTran=1/2

swRep
Place = 0
Tran = 1
TimedTran = 1
ImmediateTran=0

Object merge
Propagation: Incomp

~

Concretization

(a) Partial model refinement by merge functions

swRep
Place = 0
Tran = ⚡
TimedTran= 0
ImmediateTran= 0

swRep
Place = 1/2
Tran = 1
TimedTran= 1/2
ImmediateTran= 1/2

swRep
Place = 0
Tran = 1
TimedTran= 1/2
ImmediateTran= 1/2

swRep
Place = 0
Tran = 1
TimedTran= 0
ImmediateTran= 0

Propagation: Incomp Concretization Propagation: Incomp Materialization

(b) Inconsistency found during partial model refinement

Figure 3: Sample chain of partial models

JR(o1, . . . , on)KPZ B IP (Ri)(Z (oi), . . . , Z (oj))
Jo1 ∼ o2KPZ B IP (∼)(Z (o1), Z (o2)) J¬φKPZ B ¬JφKPZ

Jφ1 ∧ φ2KPZ B (Jφ1KPZ ∧ Jφ2KPZ)
Jφ1 ∨ φ2KPZ B (Jφ1KPZ ∨ Jφ2KPZ)

J∀o : φ(o)KPZ B
∧
x∈ObjP Jφ(o)K

P
Z ,o 7→x

J∃o : φ(o)KPZ B
∨
x∈ObjP Jφ(o)K

P
Z ,o 7→x

Figure 4: Semantics of 4-valued predicates

(i.e. a labeled graph). If all structural constraints are also respected
(M ⊨ MM) thenM can be materialized into a regular EMF model.

Example 3.1. A sequence of partial models corresponding to Tran
swRep of Fig. 1 is listed in Fig. 3b. For example, the left-most partial
model states that element swRep is a Tran (1), and it is unknown
(1/2) if it is also Place, a TimedTran or ImmediateTran.

3.3 Graph predicates

A graph predicate φ(v1, . . . ,vn) is a first-order logic (FOL) predicate
over an infinite set of variables (o1,o2, . . .), the relation symbols of
Σ (Ci ,Rj ,∼), standard logic connectives (¬,∧,∨), and quantifiers
(∃,∀). The semantics of a graph predicate Jφ(v1, . . . ,vn)KPZ can be
evaluated on a partial model P with variable binding Z : {v1, . . . ,
vn } → ObjP to yield a logic value 0, 1, 1/2 or as defined in Fig. 4.
For concrete (2-valued) models this semantics is equivalent to stan-
dard FOL. A variable binding Z of φ(v1, . . . ,vn) is called amatch, if
1 ⊑ Jφ(v1, . . . ,vn)KPZ , i.e., there is a real match or an inconsistency.

Following [57], the structural constraints of a metamodelMM
are captured by a malformedness predicate φMM where a match
of the predicate highlights elements that violate the constraint. If P
is an instance model M , and there is no match of predicate φMM
(1 @ JφMM KPZ for all variable bindingsZ , i.e. it can be 0 or 1/2), then
M is a valid instance model:M ⊨ MM , thus it can be materialized.

Example 3.2. A sample graph predicate derived from a structural
constraint of the petrinet metamodel (see Fig. 2) captures that a
Tran needs to be either a TimedTran or a ImmediateTran:
∀o : Tran(o) ⇒ TimedTran(o) ∨ ImmediateTran(o).

Type Hierarchy:

SuperUp:
C2(o)
C1(o)↑

, SuperDn:
¬C1(o)
C2(o)↓

if C1 is a supertype of C2,

Join:
C1(o) ∧ · · · ∧ Cn (o) ∧ ¬C′

1(o) ∧ · · · ∧ ¬C′
m (o)

C∗(o)↑
if among types that are not subtypes of any C′

j ,
C∗ is the unique most generic non-abstract common subtype of all Ci

(n ≥ 1,m ≥ 0, and C∗ may be equal to one of C1, . . . , Cn),

Incomp:
C1(o) ∧ · · · ∧ Cn (o) ∧ ¬C′

1(o) ∧ · · · ∧ ¬C′
m (o)

C∗(o)↓
if among types that are not subtypes of any C′

i ,
C1, . . . , Cn and C∗ have no common non-abstract subtype

(not even an improper subtype, i.e. one of Ci or C∗),

Relations:

RelUp:
R(o1, o2)

C1(o1)↑ C2(o2)↑
, RelDn:

¬C1(o1) ∨ ¬C2(o2)
R(o1, o2)↓

if C1 and C2
are the source
and target of R,

Mult:
R(o, o1) ∧ ¬(o1 ∼ o2)

R(o, o2)↓
if R has upper multiplicity 1,

ContMult:
R1(o1, o) ∧ ¬(o1 ∼ o2)

R2(o2, o)↓
if R1, R2 are containment,

ContLoop:
R1(o1, o2) ∧ · · · ∧ Rn−1(on−1, on)

Rn (on, o1)↓
if all Ri (1 ≤ i ≤ n)
are containment

Equivalence:

∼Symm:
o1 ∼ o2
o2 ∼ o1↑

, ∼Tran:
o1 ∼ o2 ∧ o2 ∼ o3

o1 ∼ o3↑
, ∼Refl:

1
o1 ∼ o1↑

Figure 5: Propagation rules for EMF structural constraints.

3.4 Merge functions for partial models

In order to unify the semantic treatment of partial model concretiza-
tion, view model merge and rule application, we define a merge
functionm : ObjP → ObjQ between objects of partial models P and
Q . Functionm is defined to ensure a refinement relation ⊑ : P ×Q
between partial models P and Q [57], which respects information
ordering as stated by the following conditions for all o1,o2 ∈ ObjP :

• IP (Ci)(o1) ⊑ IQ (Ci)(m(o1)) for all Ci ∈ Σ,
• IP (Rj)(o1,o2) ⊑ IQ (Rj)(m(o1),m(o2)) for all Rj ∈ Σ,
• IP (∼)(o1,o2) ⊑ IQ (∼)(m(o1),m(o2)).
Partial model refinement is information preserving in the sense

that all true (resp. false) predicates remain true (resp. false) in any
refinement of a partial model (as proved in [57]).

Example 3.3. Before the formal definitions, merge functions are
informally illustrated along two different sequences in Fig. 3. The
first sequence (Fig. 3a) starts from a partial model where two objects
are marked as equivalent (∼), thus (a) an object merge function can
be applied, which merges information from input objects: swRep
becomes both a Tran (due to the top object) and an TimedTran
(due to the bottom object). (b) Then an Incomp propagation rule
will refine the model in accordance with the type hierarchy since a
TimedTran object cannot be a Place or an ImmediateTran. Finally,
(c) the concretization step has no further effect, and we obtain an
instance model on the right.

The second sequence (Fig. 3b) first (a) applies an Incomp propa-
gation rule to ensure that a Tran is no longer a Place. Then (b) con-
cretization is executed to set 1/2 values to 0 for TimedTran and
ImmediateTran. Now (c) another Incomp propagation rule finds

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

that an abstract Tran needs to be refined into either a TimedTran or
an ImmediateTran thus it changes their 0 value to the inconsistent
value (both 0 and 1 at the same time). (d) If a materialization step
is now executed then the inconsistent object is removed.

Below, we define the different merge functions for partial models:
(1) Propagation rules handle type inferencing over 4-valued logic.

A propagation rule (detailed in Figure 5) takes the form prop =
φ(v1, ...,vn)
αi ↑ ··· αk ↓

, where φ is a precondition, and αi↑ (known to be true)
and αk↓ (known to be false) are atomic actions over the free vari-
ables of φ. For every match Z of φ (with 1 ⊑ Jφ(v1, . . . ,vk)KPZ), we
obtain a merge function propZ from P to a new partial model Q
with ObjQ = ObjP , propZ (o) = o, and IQ is obtained from IP :

JαKQZ =


JαKPZ ⊕ 1, if α↑ is an action of prop,
JαKPZ ⊕ 0, if α↓ is an action of prop,
JαKPZ , otherwise.

The function propZ is a merge function, because both A ⊕ 1 and
A ⊕ 0 respect the refinement ⊑ of logical values.

(2) Object merge om : ObjP → ObjQ merges two distinct objects
o1,o2 ∈ ObjP into a joint objecto1,2 ∈ ObjQ if 1 ⊑ IP (∼)(o1,o2) and
leaves the object unchanged otherwise. Formally, ObjQ = ObjP \

{o1,o2} ∪ {o1,2}, and IQ is obtained by combining the contents of
the two elements of IP with ⊕ i.e.

IQ (Ci)(o) =

{
IP (Ci)(o1) ⊕ IP (Ci)(o2), if o = o1,2,
IP (Ci)(o) otherwise.

The function omo1,ok is a merge function, because ⊕ respects the
refinement ⊑ of logical values.

(3) Concretization is a merge function conc : ObjP → ObjQ that
refines a partial model P to a concretized (partial) model Q by
setting all 1/2 values to 0. Partial model Q can only contain 0, 1 and
 values. If Q has no values then it is a concrete instance model.
Concretization preserves partial model refinement, i.e., P ⊑ Q .

A materialization function mat : ObjP → ObjQ takes a con-
cretized partial model P and removes all inconsistent elements by
setting all values to 0 to obtain an instance model Q . In general,
materialization is not a merge function (as P @ Q), since informa-
tion preservation is violated when rewriting predicates (7→ 0).
However, if a concretized (partial) model is free from values, then
materialization is a trivial merge function due to being idempotent.
Materialization is non-invasive, as it keeps all valid model elements
in a concretized model, but removes inconsistent model elements
to make the instance model EMF-compliant (e.g., serializable).

Correctness of merging partial models. Computations over 4-
valued partial models carried out by a sequence of merge functions
and finalized by concretization and materialization. Formally, if P is
a partial model andm =mk ◦· · ·◦mm amaximal sequence of propa-
gations and object merges applied to P , thenQ = (mat◦conc◦m)(P)
is an instance model and 1 @ JφMM KQ , where φMM is the dis-
junction of error patterns corresponding to enforced metamodel
constraints from Section 3.1. Therefore the final result is always
a valid instance model. Moreover, if we have JφMM KP = 0, then
P ⊑ Q , which means that no information is lost.

Proof sketch: As merge functions are closed over composition,
m and conc ◦ m are merge functions. Propagation rules ensure

‹view› ::= ‹rule› (‹rule›)∗

‹rule› ::= rule ‹pattern-dec› (=> ‹pattern-dec›)? (‹lookup›)∗
‹lookup› ::= lookup ‹pattern-dec› => ‹param-list›

‹pattern-dec› ::= ‹pattern-name› ‹param-list›

‹param-list› ::= (‹variable› (,‹variable›)∗)

‹pattern-def› ::= ‹pattern-dec›; ‹pattern-body› (or ‹pattern-body›)∗
‹pattern-body› ::= {‹constraint›; (‹constraint›;)∗}

‹constraint› ::= Ci(‹variable›) | Ci.Ri(‹variable›,‹variable›)

| ‹variable› == ‹variable› | ‹variable› != ‹variable›

| (find | neg find | count find) ‹pattern-dec›

| (check | eval) (‹expression›)

Figure 6: A compositional view transformation language.

that JφMM Km(P) ∈ {0, 1/2, }. By changing 1/2 values in Im(P) by
conc, we obtain JφMM K(conc◦m)(P) ∈ {0, }, and the 1/2 values are
removed from I(conc◦m)(P). Lastly, because enforced metamodel
constraint violations φMM can be corrected by removing objects,
JφMM KQ = 0, hence mat ensures that Q is an instance model.

If we initially have JφMM KP = 0, i.e. the partial model is surely
valid,m (or any other sequence of propagations and object merges
defined within this paper) does not introduce any values to Im(P).
Thusmat is the identity function and P ⊑ Q . Otherwise a portion of
objects is removed when obtainingQ to avoid violating metamodel
constraints φMM .

4 VIEWMODEL TRANSFORMATIONS

In this section we propose a view transformation language with
relation-based composition along with a reactive, incremental, vali-
dating and inconsistency-tolerant execution engine. The view trans-
formation is based on 4-valued partial models.

4.1 View definition by graph patterns

In this paper we introduce a declarative and fully compositional
view transformation language based on graph queries. We reuse the
Viatra Query Language [55] to form view transformation rules by
using pairs of precondition patterns, template patterns and lookups
to reference (matches of) other transformation rules.

A graph pattern captures structural constraints with a graph
predicate. In the concrete syntax of Viatra (see Fig. 6), a pattern
is declared (‹pattern-dec›) by a unique name (‹pattern-name›), and
a list of formal pattern parameters (‹param-list›). The predicate of
a pattern is defined by a disjunction of pattern bodies (‹pattern-
body›) connected by the or keyword. A pattern body contains a
conjunction of constraints that can be type and reference checks
(Ci() and Ri(,)), equivalence check (==), positive, negative and
aggregated pattern calls to compose complex patterns (resp. find,
neg find and count find keywords), or external Java source code
(using check or eval keywords) for attribute checks.

As templates of a view transformation rule, we define a restricted
set of graph patterns (denoted by the underlined part of Fig. 6),
which disallows multiple bodies, inequality constraints, negative
and aggregated pattern calls, and check or eval expressions. In
summary, a template pattern is a conjuction of atomic constraints.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Railway model transformation (tr1):
rule element(e) => elementNet(pUp, pDown, tRep);

template elementNet(
pUp, pDown, tRep)

pUp:
Place 1 pDown:

Place 0

tRep: Tran

pattern element(e)

e: Switch

e: Route

OR

rule req(r, sw) =>
connect(pSwUp, pSwDown, pRUp, pRDown, tRRep) {

lookup element(r) => (pRUp, pRDown, pRRep);
lookup element(sw) => (pSwUp, pSwDown, _); }

pattern req(r, sw)

sw: Switch

r: Route

sp: SwitchPosition

positions

follows

template connect(pSwUp, pSwDown,
pRUp, pRDown, tRRep)

pRUp:
Place

pRDown:
Place

pSwDown: Place

pSwUp:
Place

tRFail: ImmediateTran

tRRep: Tran

Dependability model transformation (tr2):
rule eModel(m) => errorNet(pUp, pDown, tRep);

template errorNet(pUp, pDown, tRep)

pUp:
Place

pDown:
Place

tRep: Tran

pattern eModel(m)

m: Error
Model

rule frm(m) => frmNet(pUp, pDown, tRep) {
lookup eModel(m) => (pUp, pDown, tRep); }

template frmNet(pUp, pDown, tRep)

pUp:
Place

pDown:
Place

tFail: TimedTran

tRep: TimedTran

pattern frm(m)

m: FailureRepair
Model

rule imm(m) => immNet(pUp, pDown, tRep) {
lookup eModel(m) => (pUp, pDown, tRep); }

pattern imm(m)

m: ImmediateRepairModel

template immNet(tRep)

tRep: ImmediateTran

(a) Rules for the railway model (tr1), dependability model (tr2) and glue (g) transforma-

tion definitions, which are composed to obtain the transformation tr1 ||g tr2.

Glue transformation (g):
pattern glue(e, m)

m: ErrorModel

e: RailwayElement

rule glue(e, m) {
lookup element(e) =>

(pUp, pDown, tRep);
lookup eModel(m) =>

(pUp, pDown, tRep); }

pattern frm(m) { FailureRepairModel(m); }

@Template pattern errorNet(pUp, pDown, tRep) {
Place(pUp); Place(pDown);
TimedTran(tFail); TimedTran(tRep);
Arc(aUpFail); Arc.kind(aUpFail, ArcKind::IN);
Arc.place(aUpFail, pUp); Arc.tran(aUpFail, tFail);
Arc(aFailDown); Arc.kind(aFailDown, ArcKind::OUT);
Arc.tran(aFailDown, tFail); Arc.place(aRepUp, pDown); }

(b) Precondition pattern frmand template frmNet

with Viatra Query textual syntax.

Place1 Transition
(abstract)

Immediate
Tran

Timed
Tran

tokens

IN Arc IN and OUT Arcs

(two objects)

OUT Arc

(c) Graphical syntax for stochastic Petri nets.

Figure 7: View transformation rules for Train Benchmark dependability example.

A view transformation definition consists of a set of view trans-
formation rules, where each rule consists of a (i) a precondition
pattern for the source language, (ii) a(n optional) template pattern
for the target language built from a restricted subset of pattern
language elements, and (iii) a list of lookups for traceability links
and parameter bindings. A lookup refers to implicit traceability
links between source and target elements created when the source
pattern was matched and the corresponding target elements were
created by the transformation rule referred in the lookup.

Example 4.1. View transformation rules of our running example
are defined in Fig. 7. A detailed description is provided for the frm
rule (for dependability transformation) in Fig. 7b. Its precondition
pattern matches a single FailureRepairModel element m, assuming
that the eModel rule has already been applied in the context of m
as defined by the corresponding lookup. As a result of the rule, the
frmNet template is applied on the target model, which specifies the
creation of two places (pUp and pDown), two TimedTran elements
(tFail an tRep), and two corresponding Arcs between them (from
pUp to tFail and from tFail to pDown). However, due to the right
side lookup directive, the two places pUp and pDown as well as the
transition tRep need to be merged with corresponding target Petri
net elements already created when rule eModel was applied – as
defined by the unification introduced by identical variable names.

4.2 Execution of view transformations

View models are constructed in four steps as shown in Fig. 8.
(1) First, each view transformation rule creates a partial model

representing the application of a template predicate in isolation.
Next, (2) the partial models are merged together by linking different
view fragments along equivalences ∼ based on the lookups in rules.
After that, (3) the merged partial model is refined by various merge
functions to enforce target metamodel constraints. Finally, (4) as
the merged view may contain inconsistencies due to the contradict-
ing view specifications, a materialization step operation removes

 values from the partial model to end up with a regular target
instance model.
I. Reactive (source-incremental) execution. First, the precon-
dition φS of a rule R is matched against the source model by cal-
culating the match set ZS = {Z | 1 ⊑ JφS KPZ }. We explicitly reuse
existing features of the Viatra framework. Changes in the match
set of source predicates are handled by using the incremental graph
query engine of Viatra [55]. All subsequent processing steps in our
engine are triggered and executed as a reactive transformation [56],
therefore our entire engine becomes reactive.
II. Template instantiation and model merge. Then each rule
R is applied independently. For each match Z ∈ ZS of rule R a
template partial model T = ⟨ObjT ,IT ⟩ is created for each rule
according to the target predicate φT . This T is constructed as:

• Each variable v of φT is mapped to an object of ObjT
• Constraints of φT are translated to a 1 value in IT :

– If there is a Ci (v) in the predicate φT , and variable v is
mapped to an object o, then IT (Ci)(o) = 1

– If there is a Rj (v1,v2) in the predicate φT , and variable
v1,v2 are mapped to objects o1,o2, then IT (Rj)(o1,o2) = 1

– If there is a v1 ∼ v2 in the predicate φT , and variable v1,v2
are mapped to objects o1,o2, then IT (∼)(o1,o2) = 1

• Every other values of IT are 1/2.
Next, each independently created template partial model {T1, . . . ,

Tn } is copied together into a merged partial modelMP = ⟨ObjMP ,

IMP ⟩ in order to represent all templates and lookups.
• ObjMP consists of the union of objects of the template partial
models: ObjT1 ∪ · · · ∪ ObjTn .

• IMP is the same as the ITi of template partial model Ti : for
each objects o1, . . . ,on in a template model Ti , and for each
symbol α ∈ Σ: IMP (α)(o1, . . . ,on) = ITi (α)(o1, . . . ,on)

• Between the templates, lookup rules set additional IMP (∼)

to 1 to add connections between templates.
• In all other cases IMP (α)(o1, . . . ,on) is 1/2.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

Incremental View Transformation
Engine

1. Incremental
Query Engine

3. Inconsistency-tolerant
Partial Target Model

(ITPT)

Source
Model

2. S2PT
Transformation

4. PT2T
Materialization

5. Model
Manipulation

API

Target
Model

Precondition
Queries

Postcondition
Templates

Unit Propagation
Rules

Transformation
Rules

Structural
Constraints

S2PT Trace PT2T Trace

match set change
notifications

partial model
updates

ITPT change
notifications API calls

executes

listens for
matches parses

into statements

incorporates
statements

fixed pointexecutes

satisfiesensures

link to matches
link to
target
objects

Figure 8: Overview of the view transformation

element(sw) => elementNet(swUp,swDown,swRep)

swRep
Tran = 1

swDown
Place = 1

swUp
Place = 1

<> eModel(ma) => errorNet(maUp, maDown, maRep)

maUp
Place = 1

maDown
Place = 1

maRep
Tran = 1

maDownRep
Arc = 1

maRepUp
Arc = 1

::IN
ArcKind = 1

::OUT
ArcKind = 1

tran

place

tran

place

kindkind

swUp swDownswRep

~

~

~

~~

~

<> frm(ma) => frmNet(maUp, maDown, maRep)

maUp
Place = 1

maDown
Place = 1

maFail
TimedTran = 1

maFailDown
Arc = 1

maUpFail
Arc = 1

maRep
TimedTran = 1

<>
glue(sw,ma)

0
EInt=1

1
EInt=1

~ ~

tran place

kind

tranplace

kind

~

tokenstokens

Figure 9: Initial partial model derived from predicates with

the effects of a source change shown as «DEL» stereotypes.

The partial model PM obtained after this step is para-complete
[8, 35], thus it may contain 1/2 and 1 values, but no 0 and values.

Example 4.2. Fig. 9 illustrates the application of the frm rule
(from Fig. 7) for the source models of Rail and Dep from Fig. 1.

• First, the precondition of the rule frm checks for the existence
of an FailureRepairModel element, and then the template
errorNet is applied. As a result, the bottom part of the partial
model (marked by a dashed rectangle) is created with model
elements corresponding to the template.

• Since the rule contains a lookup to another rule eModel, partial
model elements created by the two rules need to be merged.
This is initiated by adding equivalence relations∼ between the
corresponding elements defined by variables such as maUp,
maDown and maRep.

• Similar equivalences are declared by applying other transfor-
mation rules from Fig. 7 and Fig. 9 presents the entire partial
model derived by all rules. The glue rule is a special view
transformation rule where no target elements are created but
only equivalences are declared.

III. Reactive object merge and propagation. By now, all objects
of the partial model created by different templates are identified
to be merged by marking them with equivalence relations. The
merge functions defined for inconsistency tolerant partial models
in Section 3.4 are executed in an incremental way.

Each propagation rule prop = φ/αi has a graph predicate φ as
a precondition which can be captured by a regular graph query
evaluated over 4-valued logic. The execution of a propagation rule
can be carried out reactively by extending the constraint rewriting
technique [49] to provide 2-valued may and must graph predicates
for under- and over-approximation. For the incremental execution
of an object merge om, we rely upon incremental maintenance tech-
niques for strongly connected components used for graph queries
with transitive closure [10].

As a result of this step, all 1/2 values are removed, and all equiv-
alent objects (marked by ∼) are merged, thus the partial model
becomes para-consistent [8, 35] as it contains only 0, 1 and values.
However, during the propagation phase, the partial model may
contain both uncertain 1/2 and inconsistent values.

Example 4.3. The effects of object merge and propagation rules
were illustrated in Fig. 3a. The two swRep objects of the partial
model created by rules element (yellow dot) and frm (blue diamond).

The Fig. 3b case corresponds to a hypothetical source change
where the match of rule frm no longer exists, thus the effects of
the template need to be removed. The exact merge procedure was
discussed in Example 3.3. Templates removed from the partial model
due to this source change are shown as «DEL» stereotypes in Fig. 9.

IV. Incremental materialization. At the final step, erroneous el-
ements of the target model are removed by a materialization step.
After materialization, the partial model is equivalent to the target
instance model, thus (1) all structural constraints of the target meta-
model are ensured in accordance with the correctness of merge
functions (see Section 3.4), hence our technique is validating. More-
over, (2) each change in this final partial model can be incrementally
propagated to the target instance model, hence our approach is
(target-)incremental. If a source model change does not affect a
view model model, then no change is propagated to the target view
model. Therefore, (3) our approach is hippocratic.

Concerning the (source-target) consistency of our approach, we
need to separate the case when no symbols need to be removed
during materialization. In such a case, all steps are valid refinement
steps, thus it is guaranteed that the final model P refines all applied
templates Ti (Ti ⊑ P) which ensures consistency. If an symbol is
removed duringmaterialization, then the cause of this inconsistency
can be shown by a corresponding match of a propagation rule
precondition tracing the found issue back to the applied templates,
the source model and the enforced structural constraint of the target
metamodel.

Example 4.4. If all the propagation steps are executed for the
partial model of Fig. 9 then the target Petri net instance model of
Fig. 1 is obtained.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

5 EVALUATION

Research Questions. Our view transformation approach is fully
implemented as an open source project [1]. We carried out an
experimental evaluation to address three research questions:
RQ1. What is the complexity of different execution phases in our

view transformation engine?
RQ2. What is the performance overhead for the initial run of our

view transformation engine compared to reactive imperative
transformations with explicit traceability?

RQ3. What is the performance overhead for change-driven behav-
ior of our view transformation engine compared to reactive
imperative transformations with explicit traceability?

Case studies. We selected two substantially different view trans-
formation challenges for our investigation. (1) Dependability is an
extended version of the case study used in this paper which aims to
compose two separate transformations in a way that the target Petri
net model is significantly larger than any of the two source models.
(2) VirtualSwitch is a filtering transformation taken from [18] where
the size of the source model is significantly larger than the size of
the target model. We believe that these transformations are rep-
resentative for key practical applications of view transformations:
the VirtualSwitch scenario is typical for in traditional view mod-
els with information loss [13] while the transformation challenges
in the Dependability case are common for the formal analysis of
extra-functional properties of systems [25, 42].

Compared approaches. First, we instrumented our ViewModel
transformation approach to enable the clear separation of different
transformation phases to address RQ1. Then we compare our ap-
proach with two different view transformation styles available in Vi-
atra1. These solutions use an explicit traceability model (vs. implicit
traceability in our approach) and imperative actions in transforma-
tion rules using Java/Xtend (vs. declarative query-based templates).
However, differences in query performance can be mitigated to a
large extent. (i) The source-reactive solution [18] uses exactly the
same source queries as our view transformation approach, but rule
priorities had to be set carefully. (ii) The trace-reactive solution [29]
uses queries with both source and traceability elements as part of
its precondition. Since both the level of compositionality and the
properties of the view transformation engine are different in these
approaches compared to our view transformation approach (see
Section 2.3), our evaluation may reveal the performance trade-offs
of the increased expressiveness of our approach.

Experiment setup. To investigate the initial transformation runs
(RQ2), our measurement setup contains 5 source models of increas-
ing size. For the Dependability case, the source models ranged 1K
to 25K while the target models ranged from 3K to 72K. For the
VirtualSwitch case, the source models were ranging from 25K to
425K elements, while the target models were ranging from 500 to
9K elements. In each case, we measured the initial time for pop-
ulating the caches of queries and the execution time of the first
transformation, while the load time of source models was excluded.
1Our repository contains an implementation of the transformations in batch ATL
and a partial implementation in eMoflon, but the different performance optimizations
in those tools would disallow to separate query performance from transformation
performance.

To address RQ1, we measure how much time the different phases
of our view transformation approach takes during this initial run.

To investigate the change-driven behavior (RQ3), we first cre-
ated 10 different elementary changes (modifications of one element)
and 5 change mixes containing 100 elementary changes each (with
fix ratio between different types of change within each mix). Due to
space restrictions, we only present results for 3 changemixes within
the paper, while all other measurements (and plots) are available
in [2]. Change mix (A) presents a balanced mix of changes, while
types of changes in mixes (B) and (C) were selected from those
elementary changes that caused longer synchronization times in
the Dependability and VirtualSwitch cases, respectively.

Each experiment was executed 30 times after 10 warmup runs
on a cloud-based virtual environment (with 4 CPU, 16GB memory
and 8GB disk size) on Amazon AWS.

Results. Our evaluation results comparing the performance of
core reactive Viatra transformations and our viewmodel approach
are presented in Fig. 10a where the two Viatra transformations
(source vs. trace-reactive) have very similar behavior. The two key
internal phases of our approach separating the source-to-partial
model (S2PT) transformation and partial-model-to-target (PT2T)
materialization stages (with propagation and concretization) are
presented in Fig. 10b.

Since the VirtualSwitch case is dominated by the size of the
source model while the Dependability case is dominated by size
of the target model, the logarithmic horizontal (x) axis presents
a combined model size as the geometric mean (

√
|src | ∗ |trд |) of

source and target model sizes (i.e. number of objects) which is
compatible with the logarithmic scale of the plots. The logarithmic
vertical (y) axis presents the execution times (in ms).

The intermediate partial model for the largest source models had
(1) 222K partial model variables and 401K partial model atomic state-
ments to represent 72K target objects (Dependability) and (2) 38K
partial model variables and 58K partial model atomic statements
which represents 8K target objects (VirtualSwitch).

Discussion. Based on these experimental results, we make the
following observations related to the research questions:

RQ1: Both major view transformation phases seem to grow
polynomially in model size, but more data points (model sizes)
would be necessitated for a firm statement.

Dependability: The construction of the partial target model and
its materialization are both challenging. The S2PT phase (0.4 s on
smallest, but 12 s on largest) and the PT2T (0.3 s on smallest, but
14 s on largest) were within 0.5 orders of magnitude, while PT2T
wass slower on large models as it has to perform type inferencing
and complex object merges.

VirtualSwitch: The key challenge is to filter the source model,
thus the intermediate partial model is smaller and necessitates fewer
complex merges than above. Thus PT2T was 1 order of magnitude
faster (S2PT 3.7 s on largest vs PT2T 0.65 s on largest).

RQ2: The initial query took exactly the same time (0.15 s for
largest Dependability, 150 s for largest VirtualSwitch) for each im-
plementation of the transformations, because the same queries and
the same query engine (Viatra) was used, thus our measurements
highlight the differences in the transformation phase. There was a

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ● ● ● ●

●

●
●

●
●

● ● ● ● ●

● ●
●

●
●

● ● ● ●
●

Initial query Initial transformation (A) Usual mix (B) Depend. stress mix (C) VirtSw. stress mix

D
ependability

V
irtualS

w
itch

10+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size = sqrt(#source elements * #target elements)

E
xe

cu
tio

n
tim

e
(m

s)

Transformation ● Our approach Source−reactive VIATRA Trace−reactive VIATRA

Figure 10: (a) Complexity of source query initialization, initial transformation, and the sychronization of

a (A) balanced mix of modifications of 100 operations, and modification mixes of 100 operations focused

on stressing the (B) Dependability, (C) VirtualSwitch transformation.

●
●

●
●

●

●
●

●
●

●

D
ependability

V
irtualS

w
itch

10+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size

E
xe

cu
tio

n
tim

e
(m

s)

Execution step ● S2PT PT2T

(b) Complexity of the two execu-

tion phases in our approach dur-

ing initial transformation.

2 orders of magnitude difference in Dependability (26.7 s vs 0.48 s
on largest), and 1 in VirtualSwitch (4.4 s vs 0.4 s on largest) between
execution times in favor of reactive Viatra transformations.

RQ3: In the Dependability case, we observed 2.5 orders of mag-
nitude difference in mixes (A) and (B) which cause major changes
in the target model (94 s vs 0.2 s on largest). In mix (C), which cause
significantly fewer target changes as only attributes of places are
modified, Viatra was instantaneous, but our approach also took
only 10–150ms depending on model size to process the change.

In the VirtualSwitch case, Viatra was instantaneous even in
the modification mix specifically designed to cause target model
changes. In (A) and (C), our approach took around 100-150 ms,
which is significantly less than the initial transformation.

Conclusion. Our approach is more sensitive to target model size
than source model size. The incremental behavior of our approach
is also dominated by the size of the implied target change. For small
target deltas, the overhead of our approach was less than 150ms.
The S2PT phase takes more time for complex model filtering and
weaving challenges, while PT2T is slower when it has to materialize
a large partial model. Unlike reactive Viatra [18, 56], our approach
achieves compositional and consistent view transformations (i.e. no
manual adaptations to compose the original transformations). The
performance penalty of this increased expressiveness is about 1-2
orders of magnitude increase in execution time compared to an
industrial model transformation engine.

Threats to validity. To mitigate internal validity, 10 warm-up
runs were included prior to the measurements to decrease the
fluctuation of runtime caused by JVM. While our measurements
were executed in the cloud (AWS), the same virtual machine was
used for comparing the different approaches in a fair way.

To address external validity, we selected two transformations
with substantially different characteristics (massive filtering in Vir-
tualSwitch vs. complex merging inDependability). Train Benchmark

models serve as a common source model used in both cases, which
may reduce the generalizability of our result to other domains. How-
ever, the Train Benchmark [54] has been actively used within the
MDE community as a performance benchmark for different query
and transformation tools, thus external validity is not compromised.

6 CONCLUSIONS AND FUTUREWORK

We proposed a fully compositional view transformation language
executed by a reactive, incremental, validating and inconsistency-
tolerant view transformation engine. Our approach reuses the Via-
tra Graph Query Language [55] to define target fragments which
are merged during transformation using the novel concepts of
inconsistency tolerant partial models based on 4-valued logic foun-
dations to gracefully handle temporal inconsistencies during trans-
formations. The execution engine reuses existing support for incre-
mental graph queries as available in the Viatra framework [56]
to provide reactive behavior, while graph predicates used in merge
functions also enable incremental propagation of changes while
ensuring structural constraints of the target language.

Our experimental evaluation also highlighted that such an in-
creased expressiveness on the view transformation language level
does not come for free as the core (imperative and reactive) Viatra
engine executes 1-2 orders of magnitude faster for the case studies
– but the individual transformations had to be modified manually
to achieve the necessitated merge functionality.

The detailed evaluation of the different execution phases also
points to key directions for future work for a hybrid view transfor-
mation engine. A sophisticated static analyzer may automatically
reveal transformation rules where compositionality falls into amore
simple class, thus many optimizations available in existing view
transformation tools would become amenable to improve perfor-
mance. Nevertheless, our view transformation approach already
provides strong support for the most challenging composition prob-
lems for a very expressive view transformation language.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES

[1] 2018. ViewModel project repository. https://github.com/ftsrg/viewmodel
[2] 2018. ViewModel Tool and Benchmark Results for "Incremental View Model

Synchronization Using Partial Models". https://doi.org/10.5281/zenodo.1318156
Approved by the MODELS ’18 Artifact Evaluation Committee.

[3] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and
Giuliana Franceschinis. 1994. Modelling with Generalized Stochastic Petri Nets.
John Wiley & Sons.

[4] Anthony Anjorin, Zinovy Diskin, Frédéric Jouault, Hsiang-Shang Ko, Erhan
Leblebici, and Bernhard Westfechtel. 2017. BenchmarX Reloaded: A Practical
Benchmark Framework for Bidirectional Transformations. In BX@ETAPS 2017
(CEUR Workshop Proceedings), Vol. 1827. CEUR-WS.org, 15–30.

[5] Anthony Anjorin, Sebastian Rose, Frederik Deckwerth, and Andy Schürr. 2014.
Efficient Model Synchronization with View Triple Graph Grammars. In ECMFA
2014. Springer.

[6] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. 2010. Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations. In MODELS 2010. Springer, 121–135.

[7] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and Jean-Marc Jézéquel. 2010.
Active Operations on Collections. In MODELS 2010. Springer.

[8] Nuel D. Belnap. 1977. A Useful Four-Valued Logic. In Modern Uses of Multiple-
Valued Logic. Springer, 5–37.

[9] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. 2015. Viatra 3: A Reactive Model Transformation
Platform. In ICMT 2015. Springer, 101–110.

[10] Gábor Bergmann, István Ráth, Tamás Szabó, Paolo Torrini, and Dániel Varró.
2012. Incremental Pattern Matching for the Efficient Computation of Transitive
Closure. In ICGT 2012. Springer, 386–400.

[11] Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró. 2012. Change-
driven model transformations. Softw. Syst. Model. 11, 3 (2012), 431–461.

[12] Andrea Bondavalli, Ivan Mura, and István Majzik. 1999. Automatic Dependability
Analysis for Supporting Design Decisions in UML. In HASE ’99. IEEE, 64–74.

[13] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. 2017. A feature-
based survey of model view approaches. Softw. Syst. Model. (2017).

[14] Hugo Brunelière, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot. 2015.
EMF Views: A View Mechanism for Integrating Heterogeneous Models. In ER
2015. Springer, 317–325.

[15] Peter Buneman, Mary Fernandez, and Dan Suciu. 2000. UnQL: a query language
and algebra for semistructured data based on structural recursion. VLDB J. 9, 1
(2000).

[16] Marsha Chechik, Shiva Nejati, and Mehrad Sabetzadeh. 2012. A relationship-
based approach to model integration. Innov. Syst. Softw. Eng. 8, 1 (2012), 3–18.

[17] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
2010. JTL: A Bidirectional and Change Propagating Transformation Language.
In SLE 2010. Springer, 183–202.

[18] Csaba Debrezeni, Ákos Horváth, Ábel Hegedüs, Zoltán Ujhelyi, István Ráth, and
Dániel Varró. 2014. Query-driven incremental synchronization of view models.
In VAO ’14. ACM, 31–38.

[19] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. 2011. Specifying Overlaps
of Heterogeneous Models for Global Consistency Checking. In MODELS 2010.
Springer, 165–179.

[20] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (Eds.). 1999. Handbook
of Graph Grammars and Computing by Graph Transformation. Vol. 1. World
Scientific Publishing Co., Inc., River Edge, NJ, USA. 163–246 pages.

[21] Gregor Engels, Reiko Heckel, Gabriele Taentzer, and Hartmut Ehrig. 1997. A
Combined Reference Model- and View-Based Approach to System Specification.
Int. J. Softw. Eng. Knowl. Eng. 7, 4 (1997), 457–477.

[22] Michais Famelis, Rick Salay, and Marsha Chechik. 2012. Partial models: Towards
modeling and reasoning with uncertainty. In ICSE ’12. IEEE.

[23] Hamid Gholizadeh, Zinovy Diskin, and Tom Maibaum. 2014. A Query Struc-
tured Approach for Model Transformation. In Workshop on Analysis of Model
Transformations (CEUR Workshop Proceedings), Vol. 1277. CEUR-WS.org, 54–63.

[24] Holger Giese, Stephan Hildebrandt, and Leen Lambers. 2014. Bridging the gap
between formal semantics and implementation of triple graph grammars. Softw.
Syst. Model. 13, 1 (2014), 273–299.

[25] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, Mirco Tribastone, and
Dániel Varró. 2010. Non-functional properties in the model-driven development
of service-oriented systems. Software & Systems Modeling 10, 3 (2010), 287–311.
https://doi.org/10.1007/s10270-010-0155-y

[26] Joel Greenyer. 2006. A study of technologies for model transformation: Reconciling
TGGs with QVT. Diplomarbeit. Universität Paderborn.

[27] Joel Greenyer and Ekkart Kindler. 2007. Reconciling TGGs with QVT. InMODELS
2007. Springer, 16–30.

[28] David Hearnden, Michael Lawley, and Kerry Raymond. 2006. Incremental Model
Transformation for the Evolution of Model-Driven Systems. In MODELS 2006.
Springer, 321–335.

[29] Ábel Hegedüs, Ákos Horváth, István Ráth, Rodrigo Rizzi Starr, and Dániel Varró.
2016. Query-driven soft traceability links for models. Softw. Syst. Model. 15, 3
(2016), 733–756.

[30] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke
Nakano. 2011. GRoundTram: An integrated framework for developing well-
behaved bidirectional model transformations. In ASE 2011. IEEE.

[31] Sochiro Hidaka and Massimo Tisi. 2016. Partial Bidirectionalization of Model
Transformation Languages. Technical Report. https://hidaka.cis.k.hosei.ac.jp/
research/papers/scp2016.pdf

[32] Johannes Jakob, Alexander Königs, and Andy Schürr. 2006. Non-materialized
Model View Specification with Triple Graph Grammars. In ICGT 2006. Springer,
321–355.

[33] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A
Model Transformation Tool. Sci. Comput. Program. 72, 1–2 (2008), 31–39.

[34] Frédéric Jouault and Massimo Tisi. 2010. Towards Incremental Execution of ATL
Transformations. In ICMT 2010. Springer, 123–137.

[35] Norihiro Kamide and Hitoshi Omori. 2017. An Extended First-Order Belnap-Dunn
Logic with Classical Negation. In LORI 2017. Springer, 79–93.

[36] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. 2016. BiGUL: a formally verified
core language for putback-based bidirectional programming. In PEPM ’16. ACM,
61–72.

[37] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. [n. d.]. The Epsilon
Transformation Language. In ICMT 2008. Springer, 46–60.

[38] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2006. Merging
Models with the Epsilon Merging Language (EML). Springer, 215–229.

[39] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel
Wimmer. 2010. Explicit Transformation Modeling. In MODELS 2009. Springer,
240–255.

[40] Marius Lauder, Anthony Anjorin, Gergely Varró, and Andy Schürr. 2012. Bidi-
rectional Model Transformation with Precedence Triple Graph Grammars. In
ECMFA 2012. Springer, 287–303.

[41] Erhan Leblebici, Anthony Anjorin, Lars Fritsche, Gergely Varró, and Andy Schürr.
2017. Leveraging Incremental Pattern Matching Techniques for Model Synchro-
nisation. In ICGT 2017. Springer, 179–195.

[42] IstvánMajzik, András Pataricza, and Andrea Bondavalli. 2002. Stochastic Depend-
ability Analysis of System Architecture Based on UML Models. In Architecting
Dependable Systems. Springer, 219–244.

[43] Salvador Martínez, Massimo Tisi, and Rémi Douence. 2017. Reactive model
transformation with ATL. Sci. Comp. Prog. 136 (2017), 1–16.

[44] SergeyMelnik, Philip A. Bernstein, Alon Halevy, and Erhard Rahm. 2005. Support-
ing executable mappings in model management. In SIGMOD ’05. ACM, 167–178.

[45] Bart Meyers. 2016. A Multi-Paradigm Modelling Approach to Design and Evolu-
tion of Domain-Specific Modelling Languages.

[46] Object Management Group. 2016. MOF Query/View/Transformation Specifica-
tion. http://www.omg.org/spec/QVT/1.3/ Version 1.3.

[47] Mehrdad Sabetzadeh and Steve Easterbrook. 2006. View merging in the presence
of incompleteness and inconsistency. Requir. Eng. 11, 3 (2006), 174–193.

[48] Andy Schürr. 1995. Specification of Graph Translators with Triple Graph Gram-
mars. In WG 1994. Springer, 151–163.

[49] Oszkár Semeráth and Dániel Varró. 2017. Graph Constraint Evaluation over
Partial Models by Constraint Rewriting. In ICMT 2017. 138–154.

[50] Hui Song, Gang Huang, Franck Chauvel, Wei Zhang, Yanchun Sun, Weizhong
Shao, and Hong Mei. 2011. Instant and Incremental QVT Transformation for
Runtime Models. In MODELS 2011. Springer, 273–288.

[51] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[52] Perdita Stevens. 2010. Bidirectional model transformations in QVT: semantic
issues and open questions. Soft. Syst. Model. 9, 7 (2010).

[53] Perdita Stevens. 2014. Bidirectionally tolerating inconsistency: partial transfor-
mations. Springer, 32–46.

[54] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2017. The Train
Benchmark: cross-technology performance evaluation of continuous model
queries. Softw. Syst. Model. (2017).

[55] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,
István Ráth, Zoltán Szatmári, and Dániel Varró. 2015. EMF-IncQuery: An inte-
grated development environment for live model queries. Sci. Comput. Program.
98, 1 (2015), 80–99.

[56] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi. 2016. Road
to a reactive and incremental model transformation platform: three generations
of the VIATRA framework. Software and Systems Modeling 15, 3 (2016), 609–629.

[57] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth. 2018. To-
wards the Automated Generation of Consistent, Diverse, Scalable and Realistic
Graph Models. In Graph Transformation, Specifications, and Nets. Springer, 285–
312.

[58] Edward D. Willink. 2017. The Micromapping Model of Computation; The Foun-
dation for Optimized Execution of Eclipse QVTc/QVTr/UMLX. In ICMT 2017.
Springer, 51–65.

https://github.com/ftsrg/viewmodel
https://doi.org/10.5281/zenodo.1318156
https://doi.org/10.1007/s10270-010-0155-y
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
http://www.omg.org/spec/QVT/1.3/

	Abstract
	1 Introduction
	2 A Overview of Compositional view transformations
	2.1 Levels of compositional definitions
	2.2 Properties of view transformation engines
	2.3 Related work

	3 Inconsistency-tolerant partial models
	3.1 Preliminaries: Foundations of metamodels
	3.2 Inconsistency-tolerant partial models
	3.3 Graph predicates
	3.4 Merge functions for partial models

	4 View Model Transformations
	4.1 View definition by graph patterns
	4.2 Execution of view transformations

	5 Evaluation
	6 Conclusions and future work
	References

