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ABSTRACT
Cross-organizational, blockchain-based distributed ledger networks

in general, and those based on Hyperledger Fabric in particular,

have an architecture which can be adapted to specific application

requirements. However, network design can be a particularly chal-

lenging task, as the connection between architectural and deploy-

ment decisions and extra-functional properties can be subtle and

the requirements may contradict each other, requiring trade-offs.

In this paper, we propose a model-based distributed ledger ar-

chitecture design approach which enables expert exploration of

design options. We capture key requirements and define architec-

ture fragments using partial modelling. We enumerate qualitatively

different architectural candidates by graph generation. We evaluate

and rank order candidates in logic solver tooling. As a result, our

approach provides generative architectures for distributed ledger

networks by enabling efficient exploration of design alternatives.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; Dependable and fault-tolerant systems and networks; • Soft-
ware and its engineering → Search-based software engineer-
ing; Architecture description languages.
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1 INTRODUCTION
Distributed ledger technology (DLT) [27], predominantly still im-

plemented over the ”blockchain” principles pioneered by Bitcoin,

facilitates trustworthy collaboration between distrusting parties

over a ledger-like transaction database, shared and maintained by a

network of independent parties through some Byzantine fault (and

attack) tolerant consensus mechanism. While the use and ongo-

ing development of large, cryptocurrency-accounting distributed

ledger networks remains robust despite the ebbs and flows in the

valuation of the cryptoassets they handle, DLT is also being increas-

ingly used in a very wide range of use cases that do not involve

cryptocurrencies – from industrial and healthcare data handling

through digital identity management to replacing trusted third

parties with a distributed ledger in various financial settings [42].

Consensus being open or closed for the participation of the gen-

eral public and ledger services being open or authorization-bound

are two key aspects of a distributed ledger. (Consensus) unpermis-
sioned, open access networks – “public blockchains” – are many times

ill-suited for non-crypto applications for a host of reasons, ranging

from unpredictably fluctuating transaction costs (paid in cryptocur-

rency) and transaction delays to the simple fact of the shared ledger

being accessible to the general public. Permissioned consensus and

permissioned access blockchains – often called “consortial”, or even

“private” blockchains –, on the other hand, can provide a dedicated

distributed ledger for cross-organizational cooperations.

In stark contrast to public blockchains, a consortial distributed

ledger can be “bespoke” in the sense that, as much as the DLT plat-

form permits, it can be engineered against a set of extra-functional
requirements. Although the leading DLTs used for creating con-

sortial distributed ledgers allow addressing specific requirement

sets differently, all aim to provide the necessary facilities. Solu-

tion engineering for (i) Hyperledger Fabric [5, 33] has a strong

network architecture design aspect, as we later discuss; (ii) in R3

Corda [56], “applications” are designed as complex multi-party

message flows across network nodes; and even (iii) the “enterprise”

variants of Ethereum [29] (e.g., Quorum [23]) increasingly provide

multiple architectural building blocks. Additionally, as cross-DLT

interoperability is maturing, (iv) responding to requirements with

multi-chain designs [13] is becoming a viable engineering option.
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Figure 1: Hyperledger Fabric metamodel

At the same time, designmethodologies for consortial distributed

ledgers are in their infancy, and it remains a challenging task to
create an appropriate design for an extra-functional requirement set,
especially so that requirements are frequently contradictory. Due to
the complex interaction patterns in these peer-to-peer networks,

even experts can find the impacts of individual design decision hard
to gauge. This is a serious concern, as distributed ledgers tend to

implement at least business-critical functions, and the need to re-

engineer them after a proper extra-functional analysis – or worse,

after a failed system-level validation – is a considerable risk [60].

Model-driven engineering techniques have been successfully ap-

plied for the implementation of transaction logic in blockchains [10,

26, 59], but to our best knowledge, no such approach exists for

distributed ledger architectures. In this paper, we aim to leverage

model-driven architecture synthesis [17, 52] and design-space ex-

ploration [3, 16, 32, 39, 47] techniques to this end.

In particular, (1) we propose a domain-specific language for cap-
turing architectures and requirements of distributed ledgers. (2) We

propose a novel workflow for distributed ledger architecture gen-

eration relying on recent advances in partial graph modeling and

diverse graph generation.We (3) score candidates according to extra-
functional criteria with Answer Set Programming. We (4) demon-

strate our approach on a simplified, but highly representative view

of the requirement-based design of Hyperledger Fabric networks.

1.1 Collaborations and distributed ledgers
The core value proposition of all DLTs is avoiding the need for

trusted intermediaries in electronic record-keeping settings; instead,

users of the ledger have to place trust in the sufficient majority of

the parties maintaining a distributed ledger remaining honest [74].

Design processes for realizing novel business value with dis-

tributed ledgers are still evolving, but we can already say with

certainty that even the “migration” of cross-organizational collab-

oration models can carry significant business benefits; even with

established business model patterns and cross-organizational data

exchange relationships.

In this paper, we start with the assumption that a cross-

organizational collaboration model has been established and

mapped. Our main concern here is architecture design under such

given requirements. We do note, however, that our approach has sig-

nificant potential for the earlier design phases and their associated

decision making, too.

1.2 Hyperledger Fabric: Network architecture
In this paper, we work with the Hyperledger Fabric (HLF) design

language depicted in Figure 1. A Fabric network is jointly operated

by a set of organizations. The network maintains a set of blockchain-

backed distributed ledgers, called channels in Fabric. Each channel

is associated with a set of participating organizations; each organi-

zation participating in a channel provides network nodes for the
operation of the channel on its organizational host machines. Nodes

either participate in ordering the transactions of the channel, or

computing their side effects (“endorsing” ).
Out of the box, Fabric provides only a simple versioned key-

value ledger (channel) abstraction, without any native (built-in)

asset or transaction type. Chaincode in Fabric (smart contracts) de-

fine the transaction types and implement them in general-purpose

programming languages, relying on a key get/set style API.

Chaincode is instantiated on a channel by deployment to the

endorsing nodes of a channel. Subsequently, transaction processing

follows an Execute-Order-Validate pattern. First, an organizational

client requests the execution of a chaincode method from a number

of endorsing nodes over their current (channel) ledger view, but

without actually making ledger modifications. If the client can

collect enough matching replies on the “simulated” write effects, it

submits those “endorsements” to the ordering service.
The ordering service orders endorsed transaction proposals,

forms the next block of the blockchain and distributes it to the

endorsing nodes. (a) In Kafka-based ordering, nodes of a dedicated

“ordering organization”, running an Apache Kafka [6] cluster, per-

form the ordering. (b) In Raft-based ordering, the nodes of the

participating organizations realize the ordering service through an

implementation of the Raft [57] peer-to-peer consensus protocol.

1.3 Architecture design challenges
It is easy to see that the collaborative design of a Fabric network

by the participating organizations is an exercise in engineering

trade-offs. For a single channel, an 𝑛-out-of-𝑛 organizations en-

dorsement policy certainly maximizes integrity; at the same time,

the inability of a single organization to endorse transactions trans-

lates to unavailability. In contrast, for a 𝑘-out-of-𝑛 organizations

endorsement policy (𝑘 < 𝑛), availability should be only sensitive

to multiple, simultaneous, independent faults – at the expense of

ledger integrity. In summary, architecture designers need to make

a complex design decisions while considering the reliability, per-

formance, and cost of the architecture while satisfying different

organization requirements.

Example 1.1. In our running example, we consider secure data

sharing withing a multi-organizational distributed ledger network.

Our scenario, depicted in Figure 2a involves a HLF network with

three organizations: OrgA, OrgB, and OrgC. The network archi-

tecture ensures that OrgA and OrgB operate independently and

do not collaborate directly. However, OrgA and OrgC, as well as
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Figure 2: Secure data sharing running example

OrgB andOrgC, can securely share confidential data via established
communication channels.

The goal of the architecture synthesis process is to generate de-

sign alternatives that satisfy these information flow requirements

while also ensuring network reliability. In particular, OrgA and

OrgB should not participate in any secure channels together to pre-

vent unauthorized communication, while OrgA and OrgC, as well
as OrgB and OrgC should share at least one channel, respectively.

1.4 Generative architectures for blockchains
Previous modeling techniques (Section 6) in DLT design are limited

to smart contract implementations and do not address architectural

concerns. The aim of our work is to provide (1) a systematic way
to gather and formalize requirements during the initial steps of con-
sortial DLT design and (2) a tool to automatically derive candidate
architectures (i.e., suggested designs) for engineers to iterate on.

For DLT-related problems, the high-level data sharing and com-

munication requirements themselves have a graph structure. In our

approach, we create a partial model based on these requirements

that serves as an initial model for graph generation (Section 3.2),

leaving platform-specific concepts to be filled in by the tool (Sec-

tion 3.3). Since both the requirements and the generated architec-

tures are graphs, this problem is especially amenable to be tackled

as a graph generation problem.
To our best knowledge, (i) architecture generation has not been

used previously for DLT, and (ii) capturing requirements and archi-

tecture fragments for architecture generation in a partial model is

novel for other domains as well.

In general, our approach is applicable in other domains where

(a) the requirements imposed on the architecture can be evaluated as

necessary matches of model queries or derived features [34, 52, 73]

and (b) result in a graph generation problem (i.e., models have

complex graph structures with interconnected elements). Similar

techniques have been applied to, e.g., avionics [47], cyber-physical

systems [2], and satellite constellations [52].

2 PRELIMINARIES
Now we recall some concepts related to partial models, which we

will use to describe functional requirements and proposed archi-

tectures of distributed ledger with mathematical precision. We also

overview Answer Set Programming (ASP), which will later be used

to analyze the extra-functional properties of architectures.

2.1 Metamodeling with First-Order Logic
In this paper, we will use domain-specific modeling languages to cap-
ture platform-independent requirements of distributed ledger net-

works, as well as platform-specific information about architecture

proposals. We will capture functional requirements of distributed

ledger architectures in the derived features and well-formedness
constraints of models. Moreover, we will use partial modeling to pre-
cisely describe the available information and the design decisions

yet to be made at each step of the design process.

Similarly to [34, 52], we rely on First-Order Logic (FOL) as a se-

mantic basis for domain-specific models to formalize (a) structural

constrains arising from metamodels, (b) functional requirements,

and (c) other design rules. FOL is highly expressive can formalize

other constraints languages widely used in model-driven engineer-

ing, such as OCL [49, 71] and graph patterns [73].

Definition 2.1. A metamodel is a FOL signature ⟨Σ, 𝛼⟩, where the
set of symbols Σ include unary class C𝑖 and existence ε symbols

and binary reference R𝑗 , derived reference D𝑘 , and equivalence ∼
symbols, while 𝛼 : 𝜎 → N is the arity function 𝛼 (C𝑖 ) = 𝛼 (ε) = 1,

𝛼 (R𝑗 ) = 𝛼 (D𝑘 ) = 𝛼 (∼) = 2.

In the Eclipse Modeling Framework (EMF) [70], each EClass cor-
responds to a class symbol C𝑖 . EReferences correspond either to

reference symbols R𝑗 or derived reference symbols D𝑘 depending

on whether they have the derived flag set. This denotes that a value

of a given reference is not standalone but is to be computed from

the values other classes C𝑖 and references R𝑗 already in the model.

Example 2.2. Figure 2b shows a fragment of the metamodel in

Figure 1 selected for illustration. The associated signature ⟨Σ, 𝛼⟩
contains the classes Organization,Channel ∈ Σ, the reference

participatesIn ∈ Σ, and the derived reference collaboratesWith ∈ Σ.
Moreover, we have 𝛼 (Organization) = 𝛼 (Channel) = 𝛼 (ε) = 1,

𝛼 (participatesIn) = 𝛼 (collaboratesWith) = 𝛼 (∼) = 2.

We collect the definitions of derived references and other well-

formedness constraints into a first-order theory.

Definition 2.3. A theory T over the signature Σ, 𝛼 is a pair ⟨𝑑, E⟩,
where 𝑑 maps each derived featureD𝑘 to a FOL formula 𝑑 (D𝑘 ) with
free variables 𝑣1, 𝑣2, and the set of error predicates E = {𝜓1, . . . ,𝜓𝑛}
is a finite set of FOL formulas.

Example 2.4. We may formalize the theory T = ⟨𝑑, E⟩ associ-
ated with the running example Figure 2 as follows. The derived

reference collaboratesWith should connect Organization instances

that participate in the same Channel. Formally,

𝑑 (collaboratesWith) (𝑣1, 𝑣2) :=
𝑣1 ≠ 𝑣2 ∧ ∃𝑐 : (participatesIn(𝑣1, 𝑐) ∧ participatesIn(𝑣2, 𝑐)).
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We may add an error pattern𝜓 ∈ E to capture the lower multi-

plicity constraint [1..*] on participatesIn:

𝜓 (𝑣1) := Organization(𝑣1) ∧ ¬∃𝑐 : participatesIn(𝑣1, 𝑐),
i.e., it is an error to have an Organization 𝑣1 with no Channel 𝑐 .

2.2 Partial models and concrete models
Partial models [30, 53, 61] capture possible incomplete information

using 3-valued logic [48], which adds an extra unknown 1/2 truth
value to the usual true 1 and false 0 truth values. This allows us to

interpret partial models as 3-valued FOL logic structures:

Definition 2.5. A partial model 𝑃 over a signature ⟨Σ, 𝛼⟩ is a pair
⟨O𝑃 ,I𝑃 ⟩, where O𝑃 is a finite set of objects and I𝑃 provides a 3-

valued interpretation I𝑃 (𝜎) : O𝛼 (𝜎 )
𝑃

→ {1, 0, 1/2} for each symbol

𝜎 ∈ Σ. We call a partial model with no 1/2 values, i.e., with all

aspects fully known, a concrete model.

We set I𝑃 (C𝑖 ) (𝑜) = 1, 0, 1/2 if it is true, false, or unknown,

respectively, whether the object 𝑜 ∈ O𝑃 is of type C𝑖 . We may

similarly set I𝑃 (R𝑗 ) (𝑜1, 𝑜2) and I𝑃 (D𝑘 ) (𝑜1, 𝑜2) to denote whether

the relationship R𝑗 or derived relationship D𝑘 is present between

the objects 𝑜1, 𝑜2 ∈ O𝑃 .

The value I𝑃 (ε) (𝑜) = 1/2 denotes uncertain existence, i.e., models

that may be removed from the model. Objects with I𝑃 (ε) (𝑜) = 0

can be removed outright. Objects with I𝑃 (∼)(𝑜, 𝑜) = 1/2 represent
multi-objects that can be split to represent multiple concrete model

elements. For simplicity, we will require I𝑃 (∼)(𝑜1, 𝑜2) = 0 if 𝑜1 ≠

𝑜2, i.e., distinct objects can never be equal.

Example 2.6. Figure 2c shows an example partial model 𝑃 corre-

sponding to the collaboration in Figure 2a over the signature asso-

ciated with the metamodel Figure 2b. We have O𝑃 = {OrgA,OrgB,
OrgC,Channel::new}. Types are written inside the boxes corre-

sponding to objects, e.g., we have I𝑃 (Organization) (OrgA) = 1.
Solid lines correspond to certain links, e.g.,

I𝑃 (collaboratesWith) (OrgA,OrgC) = 1,

and dashed lines to uncertain links, e.g.,

I𝑃 (participatesIn) (OrgA,Channel::new) = 1/2.
Links not depicted are always false, e.g.,

I𝑃 (collaboratesWith) (OrgA,OrgB) = 1.

The object Channel::new is a multi-object representing all Chan-
nel instances to be added, i.e., I𝑃 (ε) (Channel::new) = 1/2 (denoted
with dashed border) and I𝑃 (∼)(Channel::new,Channel::new) =

1/2 (denoted with a shadow).

2.3 Semantics and consistency
Partial models allow us to evaluate FOL formulas 𝜑 according to

3-valued logic semantics. On a concrete model, evaluation always

results in either 1 or 0 [53]. On uncertain models, evaluation may

yield 1/2, which signifies that there is not enough information in

the partial model to provide a definite result.

Definition 2.7. The 3-valued semantics J𝜑K𝑃
𝑍
of a FOL formula 𝜑

with free variables 𝑣1, . . . , 𝑣𝑛 and variable binding 𝑍 : {𝑣1, . . . , 𝑣𝑛} →
O𝑃 on the partial model 𝑃 = ⟨O𝑃 ,I𝑃 ⟩ is given in Figure 3a [53].

JC𝑖 (𝑣)K𝑃𝑍 = I𝑃 (C𝑖 ) (𝑣) ,
JR𝑗 (𝑣1, 𝑣2 )K𝑃𝑍 = I𝑃 (R𝑗 ) (𝑣1, 𝑣2 ) ,
JD𝑘 (𝑣1, 𝑣2 )K𝑃𝑍 = I𝑃 (D𝑘 ) (𝑣1, 𝑣2 ) ,

J𝑣1 = 𝑣2K𝑃𝑍 = I𝑃 (∼) (𝑣1, 𝑣2 ) ,
J¬𝜑K𝑃𝑍 = 1 − J𝜑K𝑃𝑍 ,

J𝜑1 ∨ 𝜑2K𝑃𝑍 = max{J𝜑1K𝑃𝑍 , J𝜑2K𝑃𝑍 },
J𝜑1 ∧ 𝜑2K𝑃𝑍 = min{J𝜑1K𝑃𝑍 , J𝜑2K𝑃𝑍 },

J∃𝑣 : 𝜑K𝑃𝑍 =

max𝑜∈O𝑃 min{I𝑃 (ε) (𝑜 ), J𝜑K𝑃
𝑍,𝑣 ↦→𝑜

},
J∀𝑣 : 𝜑K𝑃𝑍 = J¬∃𝑣 : ¬𝜑K𝑃𝑍

(a) 3-valued semantics
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Organization

participatesIn
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Figure 3: Partial model semantics and refinement

Definition 2.8. A partial model 𝑃 = ⟨O𝑃 ,I𝑃 ⟩ over the signature
⟨Σ, 𝛼⟩ is consistent with the theory T = ⟨𝑑, E⟩, written as 𝑃 ⊨ T , if

• J𝑑 (D𝑘 )K𝑃𝑣1 ↦→𝑜1,𝑣𝑘 ↦→𝑜2
≽ I𝑃 (D𝑘 ) (𝑜1, 𝑜2) for all derived references

D𝑘 ∈ Σ and objects 𝑜1, 𝑜2 ∈ O𝑃 , and

• J𝜓K𝑃
𝑍

≽ 0 for all error predicates 𝜓 ∈ E and bindings 𝑍 of the

free variables of𝜓 ,

where 1/2 ≽ 1/2, 1/2 ≽ 1, 1/2 ≽ 0, 1 ≽ 1, 0 ≽ 0, is the information
order on {1, 0, 1/2} [53]. If 𝑃 is concrete, we may replace ≽ with =.

2.4 Refinement and model generation
Partial model refinement gradually incorporates information into

partial models while obeying the information ordering relation ≽,
i.e., not contradicting previously established facts.

Definition 2.9. The function bwd: O𝑄 → O𝑃 is a refinement
function from the partial model 𝑃 to 𝑄 , written as 𝑃 ≽

bwd
𝑄 , if

• for all 𝜎 ∈ Σ and 𝑞1, . . . , 𝑞𝛼 (𝜎 ) , we have
I𝑃 (𝜎) (bwd(𝑞1), . . . , bwd(𝑞𝛼 (𝜎 ) )) ≽ I𝑄 (𝜎) (𝑞1, . . . , 𝑞𝛼 (𝜎 ) ); and

• surely existing objects do not disappear, i.e., there is some 𝑞 ∈ O𝑄

with bwd(𝑞) = 𝑝 for all 𝑝 ∈ O𝑃 with I𝑃 (ε) (𝑝) = 1.

Definition 2.10. The model generation problem [53] ⟨Σ, 𝛼,T , 𝑃0⟩
consist of a metamodel signature ⟨Σ, 𝛼⟩, a theory T , and an initial
partial model 𝑃0. A solution of the model generation problem is a

concrete model 𝑀 that is a refinement of 𝑃0 (i.e., 𝑃0 ≽ 𝑀) and is

consistent with T (i.e.,𝑀 ⊨ T ).

Automated model generators [52, 53] derive such solutions 𝑀

along a chain of refinements 𝑃0 ≽ 𝑃1 ≽ · · · 𝑃𝑛 ≽ 𝑀 , exploiting the

(i) associativity of partial model refinement ≽ and the (ii) mono-
tonicity of the consistency relation ⊨ w.r.t. refinements.

Example 2.11. The concrete model 𝑀 in Figure 3b is a refine-

ment 𝑃0 ≽bwd
𝑀 of the partial model 𝑃0 shown in Figure 2c with

bwd(OrgA) = OrgA, bwd(OrgB) = OrgB, bwd(OrgC) = OrgC,

bwd(Ch1) = bwd(Ch2) = Channel::new.

Since it is consistent (𝑀 ⊨ T ) with the theory T from Example 2.4,

𝑀 is a solution of the model generation problem for T and 𝑃0. In

other words, it satisfies the requirements set forth in Section 1.3

without violating any design rules.
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2.5 Answer Set Programming
Answer Set Programming (ASP) [21, 50] is a declarative formaliza-

tion approach to model and solve search and optimization prob-

lems. ASP is based on the stable model semantics of logic pro-

gramming [36]. The concept of a stable model is used to define

declarative semantics for logic programs with negation as failure.

An ASP programs consist of atoms of the form 𝜎 (𝑥1, . . . , 𝑥𝑛),
where 𝜎 ∈ Σ is a logical symbol and 𝑥1, . . . , 𝑥𝑛 are variables or

objects constants, as well as literals, and rules of the form

r :- 𝑎1, . . . 𝑎𝑛, not 𝑏1, . . . not 𝑏𝑚.

The rule above is derived, meaning that the head (𝑟 ) is true, when

all the atoms and literals in the body (𝑎𝑖 , 𝑏𝑖 ) are true in the following

sense: a non-negated literal 𝑎 is true if the atom 𝑎 has a derivation

(from another rule or as a fact). A negated literal, 𝑛𝑜𝑡 𝑏𝑖 , is true

according to negation as failure semantics if the atom 𝑏 does not

have derivation. Facts are rules an empty body. The derivation of

facts is always true.

The results of ASP are answer sets (stable models) that satisfy

the program, i.e., constitute a consistent assignment of truth values

to the atoms in the program according to the prescribed rules.

ASP tools often enhance the core semantics with additional state-
ments.An aggregate statement (e.g., #sum, #count) applies to an ASP
atom set and returns a number. Special optimization statements are
used to specify optimization criteria to be maximized (#maximize)
or minimized (#minimize) when finding solutions to a problem.

These criteria are expressed as integer values associated with the

answer sets, and ASP solvers aim to find solutions that optimize

these values according to the specified criteria.

The #show statement specifies the projection of logical symbols to

display in answer sets. It allows users to request specific information

about the solution(s) produced by the solver, making it easier to

analyze and interpret the results.

3 REQUIREMENT-BASED DISTRIBUTED
LEDGER ARCHITECTURE GENERATION

In this paper, we propose a requirement-based approach for the

automated generation of design candidates for distributed ledger

networks. Figure 4 depicts the proposed workflow. Contributions

specifically introduced in this paper are highlighted in bold.
In the following, we overview the inputs, outputs, and major

steps of the workflow. In section 4, we instantiate this generic

workflow for the generation of Hyperledger Fabric architectures.

3.1 Inputs and output
The inputs of the proposed workflow are as follows:

(1) The functional requirements of the architecture can be ex-

pressed in a platform-independent manner, i.e., without refer-

ence to specific distributed ledger implementation concepts like

Channel or Node instances.
In our case study, we consider collaboration requirements: the
distributed ledger should either allow secure collaboration be-

tween two organizations, or disallow direct collaboration with-

out involving a trusted third party.

Inputs

Functional requirements
(e.g., participants,

desired collaboration)

Platform-specific
architecture fragment

(optional)

Extra-functional (e.g.,
reliability) requirements Formalization

Partial model

ASP invocation
statements

Domain
specification

Model
generation

Candidate
architecturesASP solving

Candidates
scored for

decision-making

Analysis
library

I.

III.

II.

(a) Revise if requirements are unsatifsfiable

(b) Revise based on proposed candidates

(c) Revise based on
extra-functional analysis results

Figure 4: Proposed workflow for requirement-based dis-
tributed ledger architecture generation

The source of such requirements may be higher-level organi-

zational requirements allocated to the distributed ledger, in-

cluding existing organization collaboration patterns [24] to be

transformed into a distributed ledger. Additionally, data sharing

and privacy regulations [28] may require or constrain inter-

organizational information flows.

(2) The extra-functional requirements may include cost, relia-
bility or performability requirements [34, 69, 72]. The simulta-

neous satisfaction of these requirements may require complex

trade-offs and constrain the possible distributed ledger archi-

tectures. Similarly to functional requirements, our approach

enables capturing extra-functional requirements independently

of the implementation details of the selected distributed ledger.

(3) Optionally, an architecture fragment (with platform-specific
elements) may be added, which will be incorporated into any

candidate designs. This allows both fine-tuning the generation
to include or exclude specific designs and proposing extensions
to existing distributed ledgers.

The output of the proposed workflow is a set of design can-
didates scored for decision-making according the specified

extra-functional requirements. For a single requirement, this al-

lows rank-ordering candidates, while for multiple requirements,

we may sample the Pareto frontier of the possible trade-offs.

3.2 Formalization of requirements
In the I. Formalization step, the input requirements are trans-

lated into a partial model and Answer Set Programming (ASP)
queries as an intermediate formal representation.

We use a partial model to capture platform-independent func-

tional requirements. Concepts in the platform-independent vo-

cabulary include the Organization instances and the desired or

forbidden collaboratesWith links between them as shown in Fig-

ure 1. Other concepts for functional requirements, such as a data

model [22] or models of the business processes to be executed by

the distributed ledger [26, 59] could be incorporated by extending

platform-independent part of the metamodel.

Platform-specific concepts, such as Channel and participatesIn
in Example 2 describe distributed ledger architecture. The domain
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(a) Initial partial model 𝑷0

Host::new

Host

EndorsingNode::new

Node
EndorsingNode

Channel::new

Channel

ChaincodeInstance::new

ChaincodeInstance

nodes

chaincodes

HostA

Host

nodes

OrgA

Organization

endorses

hosts

OrgB

Organization

hosts
OrgC

Organization

collaboratesWith
collaboratesWith

hosts

(b) Initial partial model with platform-
specific architecture fragment 𝑷 ′
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Figure 5: Formalizing requirements with partial models

specification corresponding to the selected distributed ledger tech-

nology consist of a (1)metamodel of both platform-independent and

-dependent concepts; (2) derived reference definitions, where each
platform-independent concept is mapped to platform-dependent

concepts implementing it; and (3) well-formedness rules expressing
design rules and realizable architectures.

In line with the semantic basis presented in section 2, we cap-

ture (1) as a signature ⟨Σ, 𝛼⟩, and (2) and (3) as the derived refer-

ences 𝑑 and error patterns E of a theory T = ⟨𝑑, E⟩, respectively.
We partition symbols as Σ = ΣPI ⊎ ΣPD into platform-independent

and -dependent symbols. Formulas 𝑑 (D𝑘 ) express derived refer-

ences D𝑘 ∈ ΣPI using symbols from ΣPD.

Example 3.1. Figure 5a shows a partial model 𝑃0 capturing the

collaboration requirements from Figure 2a. In addition to the plat-

form-independent concepts {Organization, collaboratesWith} ⊆
ΣPI, platform-specific concepts (e.g., Host, OrderingNode, Endors-
ingNode) for Hyperledger Fabric have been added by the domain

library. The interpretation I𝑃0 (𝜎) of platform-specific symbols

𝜎 ∈ ΣPD is all 1/2, since the implementation remains unconstrained.

𝑃 ′
0
in Figure 5b also incorporates preliminary decisions about

the architecture. As Raft was selected as the consensus protocol,

which does not rely on any dedicated ordering nodes, we have

I𝑃 ′
0

(ε) (OrderingNode::new) = 0. We also decided that OrgA has

only a single Host, HostA, which is represented as

I𝑃 ′
0

(hosts) (OrgA,HostA) =1, I𝑃 ′
0

(hosts) (OrgA,Host::new) = 0.

The architecture fragment refined the network design as 𝑃0 ≽ 𝑃 ′
0
.

Likewise, extra-functional requirements are translated into ASP
invocation statements (e.g., projection, optimization) to compute

extra-functional metrics, such as system-level fault probability, or
total infrastructure costs. For the selected distributed ledger platform
(e.g., Hyperledger Fabric), the analysis library defines the metrics

using platform-dependent terms ΣPD from the domain specification.
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Figure 6: Generated architecture model 𝑴

3.3 Model generation
During II. Model generation, we rely on a partial modeling based
model generator to the refine the initial partial model 𝑃0 into con-

crete models 𝑃0 ≽ 𝑀 that represent a diverse set of candidate ar-
chitectures. Consistency with the theory𝑀 ⊨ T ensures that the

candidates satisfy functional requirements and design constraints.

We control the size of the concrete models with scope con-
straints [44, 52], which set the desired number of model elements

and avoid unreasonably small (lacking proper redundancy) or

large (excessively costly) design candidates. Multiple models can be

created by either repeating the generation process (either sequen-

tially or in parallel).

Example 3.2. Figure 6 shows a solution 𝑀 of the model gen-

eration problem ⟨Σ, 𝛼,T , 𝑃 ′
0
⟩, where ⟨Σ, 𝛼⟩ and T represent the

domain specification for HLF architectures (see section 4), and 𝑃 ′
0

is the initial partial model with an architecture fragment from Fig-

ure 5b. By Definition 2.8, we have I𝑃 ′
0

(collaboratesWith) (𝑜1, 𝑜2) ≽
I𝑀 (collaboratesWith) (𝑜1, 𝑜2) = J𝑑 (collaboratesWith)K𝑀𝑜1,𝑜2 for all
organizations 𝑜1, 𝑜2 ∈ O𝑀 , i.e.,𝑀 satisfies the communication re-

quirements prescribed in 𝑃 ′
0
according to the platform-dependent

definitions in the domain specification.

As technical implementation, we selected Refinery [51] as the

partial modeling and model generation tool in our approach. Thus,

the formalized partial models can be expressed by the user with the

textual partial modeling notation of Refinery [53] and the domain

specification can be linked with Refinery’s import mechanism.

3.4 Extra-functional analysis
The III. ASP solving step combines the ASP invocation state-
ments selected according to the extra-functional requirements, the

analysis library, and the candidate architectures into Answer
Set Programs. By executing the program for each candidate, we cal-

culate scores (i.e., the values of metrics) to support decision-making

and enable the selection of a final architecture.
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abstract class FabricNetwork {

contains Organization[1..*] organizations

contains Channel[1..*] channels }

class RaftFabricNetwork extends FabricNetwork.

class KafkaFabricNetwork extends FabricNetwork.

class Organization { contains Host[1..*] hosts }

class Host { contains Node[1..4] nodes }

abstract class Node.

class EndorsingNode extends Node {

ChaincodeInstance[1..*] endorses opposite endorsedBy }

class OrderingNode extends Node {

Channel[1..*] orders opposite orderedBy }

class Channel { contains ChaincodeInstance[1..*] chaincodes

OrderingNode[0..*] orderedBy opposite orders }

class ChaincodeInstance {

EndorsingNode[2..*] endorsedBy opposite endorses }

Figure 7: Refinery metamodel for HLF architectures

Positive information about the candidate 𝑀 is copied into the

program: if we have I𝑀 (𝜎) (𝑜1, 𝑜2) = 1 for some 𝜎 ∈ Σ and 𝑜1, 𝑜2 ∈
O𝑀 , we add the fact 𝜎 (𝑜1, 𝑜2). The 0 values from𝑀 do not need to

be copied, as the negation as failure semantics of ASP will interpret

the lack of a matching fact as falsehood by default. Therefore, the

facts database of the ASP matches the interpretation of𝑀 . This also
keeps the program small (linear in the number of 1 values in𝑀).

As a technical implementation, we selected Clingo [35] for solv-
ing ASP. Thus, the analysis library and invocation statements are

expressed using Clingo’s textual notation.

3.5 Feedback and iterative development
The proposed approach enables iteration and revision of require-

ments according to feedback from architecture generation steps:

(a) If the model generation problem is found to be unsatisfiable,
inconsistencies in the initial partial model 𝑃0 can be highlighted

to point out contradictions in the functional requirements or

the provided architecture fragment.

(b) By inspecting the generated design candidates, requirements

and the architecture fragment may be revised to exclude solu-

tions deemed infeasible, or further refine preferred solutions.

(c) By inspecting candidate scores, trade-offs between extra-

functional requirements may be identified. To generate further

variations of a specific design candidate, parts of it can be

incorporated as an architecture fragment into the input.

The user of the framework can impose further control over the

structure of the generated models (e.g., introduce constraints or

change the size of the models), while repeated generations with

solver-based model generators tend to produce a structurally di-

verse population of models [41, 47].

4 FORMALIZATION FOR HLF NETWORKS
In this section, we present our formalization for Hyperledger

Fabric architectures as Refinery [51] domain definition to capture

platform-independent and -dependent concepts and as a Clingo [53]

analysis library for extra-functional analysis.

% Error patterns

error orderingNodeInRaftNetwork(n) <->
RaftFabricNetwork(hlf), organizations(hlf, o),

hosts(o, h), nodes(h, n), OrderingNode(n).

error channelWithoutOrderingNodeInKafkaNetwork(n) <->
KafkaFabricNetwork(hlf), channels(hlf, c), !orderedBy(c, _).

% Derived features

pred peers(ch, n) <-> endorsedBy(ch, n)

; chaincodes(ch, ci), orderedBy(ci, n).

pred participatesIn(org, ch) <->
hosts(org, h), nodes(n, h), peers(ch, n).

pred collaboratesWith(o1, o2) <->
o1 != o2, participatesIn(o1, ch), participatesIn(o2, ch).

Figure 8: Error patterns and derived references (excerpt)

import hyperledger_fabric.

collaboratesWith(OrgA, OrgC).

collaboratesWith(OrgB, OrgC).

!collaboratesWith(OrgA, OrgB).

RaftFabricNetwork(Hlf).

hosts(OrgA, HostA).

!hosts(OrgA, Host::new).

!exists(OrderingNode::new).

𝑃0
𝑃0 ≽ 𝑃 ′

0

Figure 9: Initial partial models 𝑷0 and 𝑷 ′0

4.1 Domain definition
Our domain definition for HLF is based on the metamodel in Fig-

ure 1. Platform-independent concepts are the Organization class

and the collaboratesWith derived reference, while the rest of the

symbols formalize the HLF-specific distributed ledger implementa-

tion and the satisfaction of functional requirements.

4.1.1 Metamodel. Figure 7 shows the Refinery textual syntax [53]

(similar to Xcore [1] for EMF) for classes and references in the

metamodel. In Refinery, derived references are declared at their

definition site, thus, the code for the metamodel omits them. They

will be discussed along the formalization of the theory T of derived

references and error patterns.

The root element of the architecture model is an instance of

FabricNetwork. It contains theOrganization instances representing

the organization collaborating via HLF, as well as HLF Channels.
Each organization runs physicalHosts, where software components

– represented as Node instances in our metamodel – are deployed.

We formalize two consensus protocols supported by HFL. The

older, Apache Kafka [6] based consensus relies on dedicated Or-
deringNode instances to order transactions sent to Channels. In
contrast, in Raft [57] all nodes are assumed to participate in trans-

action ordering implicitly.

EndorsingNodes execute chaincodes (smart contracts) which im-

plement the transaction validation logic. Such nodes communicate

via Channels by sharing ledger state and transactions associated

with the chaincodes.

We chose not to model the chaincode impelementations deployed
to EndorsingNodes directly; instead, a ChaincodeInstance is al-

located to the Channel. Implementation for any chaincodes en-
dorsedBy an EndorsingNode is assumed to be deployed to it. In the

future, our metamodel could be extended with further concepts if

tracking of specific chaincode implementations is required (e.g., to

enforce software redundancy by requiring multiple implementations

for transaction logic in each ChaincodeInstance).
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4.1.2 Well-formedness constraints. Our formalization specifies

well-formedness rules for valid HLF architectures. Some well-

formedness rules are inferred from the metamodel by Refinery:
• Containment constraints (denoted with the contains keyword)
ensure that each object except the root FabricNetwork has a

single container and the containment hierarchy is acyclic.

• The multiplicity constraint [2..*] on endorsedBy ensures that

each ChaincodeInstance has at least 2 EndorsingNodes to main-

tain concensus. We cannot use the same constraint for orderedBy,
because RaftFabricNetworks have no explicit OrderingNodes.

• We represent the finite capacity of a Host to run nodes with an

upper bound of [1..4].
Figure 8 shows our additional error patterns (denoted with the

error keyword) and derived references (denoted with the pred
keyword). They are expressed in logical programming notation [53],

where comma (,) and semicolon (;) correspond to logical or and

and, respectively, and variables are existentially quantified.

The error patterns ensure that OrderingNodes are mandatory in

Kafka networks but forbidden in Raft networks.
Crucially, we use derived references for checking the satisfac-

tion of functional requirements. A Node is considered a peer of
a Channel and hence having access to all transaction data if it is

(i) an ordering node for the channel in a Kafka network, or (ii) is
endorsing transactions for some ChaincodeInstance of the channel.
Organizations participateIn a Channel if they host some peer of
it. Organizations collaborateWith each other if they participateIn
some common Channel.

4.1.3 Initial partial model. Initial partial models may also be ex-

pressed using Refinery’s logical notation. Such a partial model is a

collection of facts, either positive (𝜎(𝑜1, 𝑜2)) or negative (!𝜎 (𝑜1, 𝑜2)).
The interpretation of facts not provided in the partial model is con-

sidered 1/2 and multi-objects with the suffix ::new are added for

concrete classes automatically.

Example 4.1. The left side of Figure 9 shows the Refinery tex-

tual notation for the initial partial model 𝑃0 in Figure 5a. After

importing our domain specification, positive and negative collabo-
ratesWith facts are provided.

To encode 𝑃 ′
0
from Figure 5b, additional platform-specific facts

on the right side of Figure 9 should also be included.

4.2 Analysis library
The analysis library defines the metrics using platform-dependent

terms from the domain specification. As a syntactic limitation of

Clingo [35], all logical symbols have their name start with a lower-

case letter, e.g., we use node to refer to the Node type in Refinery.

Otherwise, the set of ASP facts corresponds to the architecture

model generated in the previous step.

4.2.1 Cost calculation. In our example formalization, we use a sim-

ple weighted function of the model elements shown in Figure 10

to determine infrastructure operational expenses. The auxiliary net-
workUse rule computes the pairs of Node instances that are peers
of a common Channel, yet are located on distinct Hosts. In the cost
function, we assume that the upkeep of a single Node is 10 times as

large as that of a network link. Note that we divide the number of

Node pairs ⟨N1,N2⟩ with networkUse to account for bidirectional

% Network links

networkUse(N1, N2) :- nodes(H1, N1), nodes(H2, N2), H1 != H2,

peers(N1, Channel), peers(N2, Channel).

% Cost function

cost(COST) :- A = #count{Node : node(Node)},

B = #count{N1, N2 : networkUse(N1, N2)}, COST = 10 * A + B / 2.

% Invocation statement for cost calculation

#show cost/1.

Figure 10: Cost calculation

% Combinatorial variables for Node and Host failures

{hostFailure(Host) : host(Host)}. {nodeFailure(Node) : node(Node)}.

inoperative(Node) :- nodeFailure(Node).

inoperative(Node) :- nodes(Host, Node), hostFailure(Host).

% Violation if there are less than two active Orgs per Channel

activeOrgs(Channel, Org) :- peers(Channel, Node), nodes(Host, Node),

hosts(Org, Host), not inoperative(Node).

violation :- channel(Channel),

#count{Org : activeOrgs(Channel, Org)} < 2.

% Checking the cases where active faults violated the constraint

:- not violation.

% Score function

resilienceScore(SCORE) :- A = #count{Host : hostFailure(Host)},

B = #count{Node : nodeFailure(Node)}, SCORE = -2 * A - 1 * B.

% Invocation statement for optimization

#maximize(SCORE : resilienceScore(SCORE)).

Figure 11: Resilience score calculation

links. The corresponding #show cost/2 invocation statement causes
the ASP solver to print the computed cost.

4.2.2 Resilience score. We define a general resilience score (Fig-

ure 11) to quantify the resiliece of the HLF network architecture

against independent Host or Node faults. Note that our score does
not take interactions between ChaincodeInstances and the cor-

responding transaction into account. Thus, it is an application-

agnostic metric of resilience. If desired, application-specific metrics

could be developed in the future by further modeling transaction

logic and analysing the impact chain of failures.

We add auxiliary variables hostFailure(_) and nodeFailure(_)
for faults of Hosts and Nodes, respectively. The failure of a Host
also causes nodes to become inoperative. We assume a 2-out-of-𝑛

Organizations channel policy, i.e., an integrity violation is detected

if some Channel has operative peers from less than 2Organizations.
The statement :- not violation instructs the ASP solver to only

consider answer sets where violation is true.

In the resilience score, hostFailure has a weight of −2 and node-
Failure has a weight of −1. Lower resilience scores are better, i.e.,
indicate that more failures are needed to compromise ledger in-

tegrity. In the invocation statement, we #maximize the score, i.e.,
find the most pessimistic outcome for each design candidate.

5 EVALUATION
We conducted an initial performance and diversity evaluation to

answer the following research questions:

RQ1: How can model generation scale concerning the size of

the generated architectures and a number of constraints?

RQ2: How diverse are the generated architectures concerning

their cost and resilience?
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Problem ID size Orgs Nodes Constraints Channels
raft-size1 15..25 3 3..15 3 3..*

raft-size2 15..25 4 3..15 6 4..*

raft-size3 15..35 6 4..20 9 4..*

raft-size4 15..40 9 4..20 14 4..*

raft-size5 15..50 12 4..20 20 5..*

raft-size6 15..70 15 4..60 26 5..*

Problem ID size Orgs Nodes
Ordering and
Endorsing

Constraints Channels

kafka-size1 15..60 3 8..30 4..15 3 3..*

kafka-size2 15..60 4 8..30 4..15 6 4..*

kafka-size3 20..70 6 8..50 4..25 9 4..*

kafka-size4 20..90 9 8..50 4..25 14 4..*

kafka-size5 20..120 12 10..60 5..30 20 5..*

kafka-size6 20..140 15 10..80 5..40 26 5..*

Table 1: Raft and Kafka generation configurations

5.1 Measurement setup
For Refinery model generation, architecture transformation and

ASP solving, the following computational configuration was used
1
.

A time limit of 5 minutes was set for the model generation. While

other generation methods like [40] invest an extensive computation

resource to provide a few complex solutions, we aim to support

model development with quick response.

5.2 Compared approaches and metrics
In our evaluation, we automatically generated a set of architec-

tures for an increasing set of organizations and communication

requirements. Problem size (Problem ID) can be defined by the type

of architecture (Raft/Kafka), the size (i.e., the number of objects

in the model), the organizations involved (Orgs), the number of

Hyperledger Endorser and Orderer Nodes (Nodes), the commu-

nication constraints between the organizations (Constraints), and
the number of channels (Channels). For Kafka-type problems, the

scope is extended by explicitly stating the range of the number of

Ordering and Endorsing nodes (Ordering and Endorsing Nodes) to
help the generator create each type of node.

The measurements were carried out with several model sizes
(Refinery scope). We defined a range of scenarios with increasing

size in the candidate architecture. Table 1 summarizes the scope

configurations. For each setting, 30 measurements were run (and

5 extra to mitigate any warm-up effects), and the following data

collected were used for the evaluation:

• Problem ID: Identifies the architecture type.

• Refinery Runtime: Time to generate an instance model in seconds.

• ASP Runtime: Total ASP solving time in seconds.

• Cost: Total estimated cost defined in Figure 10.

• Resilience Score: A value derived from the number of Nodes and
Hosts that should fail to violate integrity (defined in Figure 11).

5.3 RQ1: Scalability of model generation
To answer RQ1, we conducted a performance evaluation with in-

creasing model sizes. We measured the runtime and success rates

1
OS: MacOS 14.4.1, CPU: 2,6 GHz 6-Core Intel i7, Memory: 32 GB 2667 MHz DDR4

Java VM: OpenJDK 64-Bit Server VM Corretto-21.0.2.13.1, Heap Space: 16GB

Figure 12: Median generation runtime and success rates

of the model generation process for each problem size and net-

work type as proposed in [52]. Figure 12 shows the median of the

successful model generation times and success rates (out of 30 runs).

For a single run, themodel generator produces a single consistent

concrete model, or times out. On the left y-axis (blue bar chart), we

show the median runtime of successful generator runs (i.e., produc-

ing a consistent concrete model). On the right y-axis (red line chart),

we show the percentage of runs below within the timeout limit. For

configurations with a success rate above 0%, generator runs can

be repeated as needed to produce a consistent model population.

Therefore, runtime/success rate represents the expected time for

generating a solution without restarts or parallel execution.

In case of Raft, it can be observed that larger models take longer

time, and it is increasingly difficult to generalize the architecture. In

contrast to the five-minute timeout, the median time to successfully

generate the largest model is under 53 seconds. However, in the

case of the largest model, the success rate fell below 20%.

Since, in the Kafka architecture, different Nodes are responsible
for ordering and endorsement, it is necessary to generalize larger

and more complex models. It can be observed that even with the

smallest input configuration, the median time was around 40 sec-

onds, while with kafka-size2 and 3 it was about 1 minute. For larger

problems, no solution was found within the 5-minute timeout.

The complexity of the problem is also shown by the fact that

while in the raft case, all model generation was successful in the

case of the smallest configuration, here, this success rate is 30%.

For both architectures generation time increaseswith the number

of Nodes and constraints to be generated. The generation time

also depends greatly on the choice of scope that requires domain

knowledge about the architecture.

The runtime of the ASP solver was negligible compared to the

model generation (Figure 13a and 13b). The median ASP runtime

for all successfully generated models was less than 0.02 seconds.

It is observed that the ASP solving time increases with model size

because of the number of possible failing component combinations.
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(a) Raft configurations (b) Kafka configurations

Figure 13: Median of ASP solving times

RQ1: The generation time scales with the number of nodes and

constraints. In the evaluation, architectures with a maximum of 70

nodes were successfully generated. To generate a Kafka network

with equivalent capability (in Org number and communication

constraint) to the same Raft counterpart, requires about twice as

many nodes and additional architectural constraints.

However, in all cases, the successful model generations take a man-

ageable amount of time (largest median within 110 seconds), even

for large models (maximum potential size of 70 nodes).

5.4 RQ2: Cost-resilience trade-off
We evaluated the generated models using a cost-resilience analysis

specific to Hyperledger Fabric networks. Each model estimated

cost based on the number of objects (e.g., organizations, channels,

hosts, nodes). The ledger resilience was measured through metrics

derived from the ASP solver output, focusing on the number of

node failures required to disrupt consensus on at least one channel.

To visualize this trade-off, we constructed Pareto fronts that

depict the relationship between cost and resilience of the architec-

ture for different problem sizes. These fronts show a curve where

models with lower costs (fewer nodes) have lower resilience scores

(fewer failures tolerated). As we move along the curve, models

with increasing costs (more nodes) should demonstrate improved

resilience scores. This visualization will allow users designing Hy-

perledger Fabric networks to select a model that best suits their

specific needs based on the balance between cost and resiliency.

Figure 14 shows the cost-resilience trade-off for the generated

architectures. Metrics are computed for each model individually.

It is observable for Raft that smaller models have lower resilience,

but their associated costs are also low. In the case of larger models,

with the increasing number of Organizations, as the costs increase,

so does the resilience score. The more organizations in the network,

the better the consensus can be secured.

As evidenced by Figure 14, the generated structurally diverse

models achieved a diversity of metrics and covered a variety of

trade-offs along the Pareto front.

For Kafka architectures, it shows that it is difficult to generate

diverse and resilient models due to the complexity (in terms of the

number of nodes and constraints). Defining the scope for generation

is also difficult, and Kafka is a more complex model generation task.

Figure 14: Resilience Score over Cost

However, Kafka was deprecated in Hyperledger Fabric v2.x and is

no longer supported in v3.x.

RQ2: With a larger model size, more diverse results are obtained, so

that for large models (e.g., raft-size6), higher resilience (-6) can be

achieved. The cost is also higher for the Kafka network due to twice

as many peers compared to the Raft architecture (e.g., for size-2,

the cost is higher than 500 for Kafka, it is below 250 for the Raft

architecture). However, these increased costs are not associated

with an increase in resilience.

6 RELATEDWORK
Hyperledger Fabric modeling tools. As reflected by the survey

of Curty et al. on the use of MDE in model-based applications [26],

currently, model-driven approaches are dominantly employed for

smart contract design. Specifically for BPMN and Ethereum-based

multi-chain deployment, early, architecturally relevant results are

appearing [14], but these do not approach “architecture” as a true

first-class concept and, to our knowledge, have not been translated

to Hyperledger Fabric yet.

Logically, the deployment automation needs of (consortial)

blockchains should lead to at least DSLs relevant to architecture

description. For Ethereum, [10] introduces KATENA, a framework

that simplifies the deployment and management of blockchain

applications. For Fabric, the Hyperledger Labs project Fablo uses

declarative network descriptions in JSON for deployment. For de-

ployment on Kubernetes, Helm charts are also available. However,

to the best of our knowledge, these deployment-modeling DSLs do

not have any design support yet.

Uncertain models. Partial models are similar to uncertain mod-

els, which offer a rich specification language [30, 62] amenable

to analysis. They provide a more intuitive, user-friendly language

compared to 3-valued interpretations, which allows the designers

to annotate existing models with uncertainty (e.g. weather an object

may or may not exists). This allows the developer to reuse existing

models as initial designs plans, but it cannot be used to specify

requirements. Moreover, uncertain models needs to be formatted as

valid models, which disables specific structures (e.g., objects with

multiple potential containers in Figure 5a). Additionally, uncertain

models does not handle WF constraints natively.
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Potential concrete models compliant with an uncertain model

can be synthesized by the Alloy Analyzer [64], or refined by graph

transformation rules [63]. Approaches like [31] analyze possible

matches and executions of model transformation rules on partial

models by using a SAT solver (MathSAT4) or by automated graph

approximations using graph query engines [53].

Generative architectures with logic solver approaches. These
approaches translate graphs and WF constraints into a logic formu-

lae and use underlying solvers to generate graphs that satisfy them.

Back-end technologies used for this purpose include SMT solver

such as Z3 [45, 65, 75], SAT-based model finders (like Alloy [44])

[4, 9, 41, 49, 52, 54, 66], CSP-solvers [18–20, 37], theorem provers

[8], first-order logic [12], constructive query containment [58] and

higher-order logic [38]. For most of these approaches, scalability is

limited to small models/counter-examples.

Some solver-based model generation approaches combine solver

calls with other calculations: [55] proposes higher-order solver calls

to evaluate more complex properties, and [34] relies on external

numerical solvers to calculate and optimise metrics. Our proposed

approach can be considered a special combination of those two,

which aims to derive a wide range of design alternatives while

calculating multiple metrics (including a resilience metric).

Generative architectures with Design Space Explorers. Graph-
based DSE use graph transformations [3] or refactorings to generate

candidate designs as graph models. They either rely onmodel-based
search, where a graphmodel is mutated, or rule-based search, where
solutions constructed as a sequence of graph transformations [46].

MOMoT [32] and MDEOptimiser [16] rely on the Henshin model

transformation language [68] for model-based exploration. Consis-

tency constraints pose a challenge for such approaches: they are

either handled by relaxing hard constraints into soft constraints or
by encoding them in the transformation rules. Burdusel et al. [15]

proposed the automated generation of transformation rules that pre-

serve a limited class of hard constraints (multiplicity constraints).

Viatra-DSE [2, 39] is a rule-based DSE tool that relies on the

Viatra [73] language. SHEPhERd [25] and EASIER [7] aim to derive

sequences software architecture refactorings according to extra-

functional criteria.

Hybrid approaches. These approaches divide the model genera-

tion task into multiple sub-tasks and use a different underlying tech-

niques to resolve each one. In this paper, we are using the Refinery

framework [51] for model generation, which can be considered as

a hybrid generation approach. The PLEDGE model generation tool

[67] provides such a scalable implementation by combining meta-

heuristic search for model structure generation with an SMT-solver

based approach for attribute handling. The Evacon tool [43] imple-

ments a search-based evolutionary testing approach followed by

symbolic execution to generate tests for object-oriented programs.

Autograph [65] sequentially combines a tableau-based approach

for model structure generation with an SMT-solvers for attributes.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel architecture generation frame-

work for Hyperledger Fabric networks, which can enumerate pos-

sible valid designs while satisfying organization-level requirements

specified as partial models. The proposed approach uses the Re-

finery model generation framework to derive valid architecture

candidates and answer set programming to analyze candidates con-

cerning their resilience. We evaluate our framework by generating

Apache Kafka and Raft networks.

In future work, we aim to extend our approach to PBFT net-

works [11], simplifying the network architecture design and thus

potentially improving the performance of our approach. Addi-

tional materials and examle generated models are available at:

https://doi.org/10.5281/zenodo.13145716.
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