
Automated Generation of Consistent Graph
Models With Multiplicity Reasoning

Krist�of Marussy , Oszk�ar Semer�ath , and D�aniel Varr�o

Abstract—Advanced tools used in model-based systems engineering (MBSE) frequently represent their models as graphs. In order to

test those tools, the automated generation of well-formed (or intentionally malformed) graph models is necessitated which is often

carried out by solver-based model generation techniques. In many model generation scenarios, one needs more refined control over

the generated unit tests to focus on the more relevant models. Type scopes allow to precisely define the required number of newly

generated elements, thus one can avoid the generation of unrealistic and highly symmetric models having only a single type of

elements. In this paper, we propose a 3-valued scoped partial modeling formalism, which innovatively extends partial graph models

with predicate abstraction and counter abstraction. As a result, well-formedness constraints and multiplicity requirements can be

evaluated in an approximated way on incomplete (unfinished) models by using advanced graph query engines with numerical solvers

(e.g., IP or LP solvers). Based on the refinement of 3-valued scoped partial models, we propose an efficient model generation

algorithm that generates models that are both well-formed and satisfy the scope requirements. We show that the proposed approach

scales significantly better than existing SAT-solver techniques or the original graph solver without multiplicity reasoning. We illustrate

our approach in a complex design-space exploration case study of collaborating satellites introduced by researchers at NASA JPL.

Index Terms—Domain-specific architectures, graphs and networks, logic and constraint programming, model validation and analysis

Ç

1 INTRODUCTION

MODEL-BASED systems engineering frequently uses com-
plex modeling tools, like Capella, Artop, Matlab

Simulink or Yakindu Statecharts. When these modeling
tools are used in safety-critical systems, safety standards
(like DO-330 [1] for avionics systems) may prescribe that
(1) only the output of a qualified tool can be trusted, and
(2) such a tool should meet the same requirements as the
critical system component it designs. However, such qual-
ity assurance for the software running in modeling tools
is very complex, which makes tool qualification an
extremely costly process. As such, automated techniques
for synthesizing effective test suites used in the software
quality assurance of complex modeling tools would be
highly beneficial.

The automated synthesis of high-quality test cases is a
recurrent challenge in many areas of software and systems
engineering in order to simultaneously improve quality and
productivity. Since test cases created manually by engineers
can easily miss important corner-cases of specifications, cer-
tain application areas (e.g., safety-critical software) substan-
tially rely on such automated test case generators.

This paper focuses on automated model generators which
represent tests in the form of graph models. This is a sub-
class of generators with high practical relevance but also
high complexity. For example, graphs may models complex
test stubs in object-oriented programs [2], [3] (e.g., nodes
are objects, edges are pointers). The quality assurance of
smart cyber-physical systems (CPS) can rely upon prototyp-
ical test contexts given in the form of graphs [4], [5], [6].
Model generators are also beneficial for testing modeling
tools [7].

Further practical application scenarios are investigated in
[8], which identifies a long-term research agenda aiming to
provide desirable high-level properties for automatedmodel
generators. Using the terminology of [8], an advanced syn-
thetic model generator should be domain-customizable, con-
sistent, diverse, realistic and scalable.

For domain customizability, our paper uses precise under-
lying specification techniques to capture the domain concepts
and their relations captured in the form of ametamodel, while
consistent models can be further restricted by design rules or
well-formedness constraints (defined as OCL constraints [9] or
graph patterns [10], [11]).

There is a wide range of model generators such as
Alloy [12], [13], Formula [14], [15], USE [16], UML2CSP
[17], SDG [18], [19] and Viatra Solver [20], [21] to auto-
matically derive consistent models for a given domain
specification. Several generators are based on precise
foundations offered by backend logic solvers (like SAT
solvers [22], [23] or SMT solvers [24]). These tools excel
at finding inconsistencies (if they exist) by interpreting
domain specifications as a logic problem, but they can
only derive small consistent models. Moreover, they fail
to derive a diverse set of models [20], [25], which restricts
their use in practical testing scenarios.

� Krist�of Marussy and Oszk�ar Semer�ath are with the Budapest University of
Technology and Economics, 1111 Budapest, Hungary.
E-mail: {marussy, semerath}@mit.bme.hu.

� D�aniel Varr�o is with the Budapest University of Technology and Econom-
ics, 1111 Budapest, Hungary , and also with McGill University, Montreal,
Quebec H3A 0G4, Canada. E-mail: daniel.varro@mcgill.ca.

Manuscript received 27 Nov. 2019; revised 20 July 2020; accepted 20 Aug. 2020.
Date of publication 21 Sept. 2020; date of current version 16 May 2022.
(Corresponding author: Krist�of Marussy.)
Recommended for acceptance by S. Nejati.
Digital Object Identifier no. 10.1109/TSE.2020.3025732

1610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9135-8256
https://orcid.org/0000-0002-9135-8256
https://orcid.org/0000-0002-9135-8256
https://orcid.org/0000-0002-9135-8256
https://orcid.org/0000-0002-9135-8256
https://orcid.org/0000-0002-3592-5105
https://orcid.org/0000-0002-3592-5105
https://orcid.org/0000-0002-3592-5105
https://orcid.org/0000-0002-3592-5105
https://orcid.org/0000-0002-3592-5105
https://orcid.org/0000-0002-8790-252X
https://orcid.org/0000-0002-8790-252X
https://orcid.org/0000-0002-8790-252X
https://orcid.org/0000-0002-8790-252X
https://orcid.org/0000-0002-8790-252X
mailto:marussy@mit.bme.hu
mailto:semerath@mit.bme.hu
mailto:daniel.varro@mcgill.ca

Alternatively, logic reasoning or search-based techniques
can be lifted directly on the level of graphs [18], [19], [26] for
model generation purposes. These approaches scale better
with respect to the size and diversity of the derived models,
but they may fail to reveal inconsistencies in specifications.

Finally, the realistic nature of synthetic models can also be
important in test generation scenarios. For example, realistic
test models used for autonomous cars represent real test
environments [5], [6] while unrealistic test cases (e.g.,
obscure traffic situations) are considered as false positives.
Failures caused by realistic scenarios are more severe, as
they have more chance to happen on real workload. Several
examples in testing software-intensive CPSs [5], [6], [18], [19],
[27], [28] highlight this realistic aspect. Furthermore, the
usability of automatically generated tests may be hindered
by test cases that are not realistic (i.e., strange and difficult
to comprehend for developers) [29].

Problem Statement. To increase the realistic nature of mod-
els, one needs more refined control over the structure of the
auto-generated models. For example, partial snapshots [30],
[31] define model fragments that need to be extended by the
model generator, thus it defines the expected initial structure
of each models. Furthermore, type scopes [12] allow to pre-
cisely define the required number of newly generated ele-
ments (per type/class), thus focusing the generation process
onmore relevant instancemodels of the target domain.

While logic solver-based model generators support vari-
ous scope constraints, they have severe scalability issues
and they fail to generate complex graphs (without isolated
nodes or star structures) with more than 50-70 nodes for
complex domains [32]. The search-based approach [18], [19]
can generate a large number of simple graph models with
fine-grained type distributions, but it is unable to derive
large and connected consistent models. Finally, the graph
solver [32] can derive large and connected models, but it
only allows to cap the total size of the model, and thus it is
unable to fine-tune the models along type scopes.

Contributions. In order to improve the scalability and use-
fulness of automated model generation, we propose a novel
technique that combines the advantages of partial model
refinement techniques [26] with numeric reasoning on
model scopes. In particular,

� We introduce scoped partial models as a background the-
ory to represent type scopes formodel generations.

� We define a mapping of structural and well-formedness
constraints into numeric constraints that can be evalu-
ated on scoped partial models.

� We use existing numerical solvers (i.e., IP and LP
solvers) to efficiently guide the generator process.

� We extend an open source model generator [32] with
type scope support and integrate various IP and LP
solvers to provide a software prototype tool.

� We evaluate the effectiveness of the approach on
numerous case studies including a running example
of a complex design space exploration challenge [33]
introduced by researchers at NASA Jet Propulsion
Lab.

The current paper builds upon but substantially extends
past research results in [8], [20], [32]. More specifically, the
introduction and handling scope constraints are novel

conceptual results of the current paper. In order to maintain
the favorable theoretical properties (e.g., completeness, diver-
sity) of the generic model generation framework formally
proved in [8], [20], the refinement calculus is extended here to
incorporate scopes. The prototype implementation builds on
and extends [21], [32] by integrating various numerical solvers
into the decision procedure. Finally, the experimental evalua-
tion shows how novel results improve scalability and the real-
istic nature ofmodelswrt. existingwork.

Added Value. With multiplicity reasoning, graph genera-
tors can be configured by numeric constraints to focus
model generation on the relevant fragment of models.
Although a single metric cannot ensure the realistic nature
of models, but ensuring the realistic distribution of model ele-
ments were found to be useful in [18] as it filters out a wide
range of surely unrealistic models. As such, automatically
synthesized corner-cases will have higher practical rele-
vance (e.g., test scenarios in autonomous driving will inves-
tigate relevant traffic situations).

With the help of numerical reasoning, graph generators
will be able to measure and efficiently control the quantity
of nodes. This significantly improves the performance of
existing graph solver algorithms. Moreover, it enables a
practical iterative workflow for test generation where ini-
tially, one can start with general scopes which are gradually
refined to grow larger consistent models.

Finally, by adhering to the refinement calculus, the gen-
erator continues to provide favorable properties such as
consistency, completeness or diversity (but the in-depth
investigation of such properties is out of scope for the
paper).

2 MODELS AND PARTIAL MODELS

The computational design synthesis of interferometry mission
architectures has been introduced in [33] as a complex chal-
lenge for early mission planning for space missions of
NASA where a designated architecture consists of collabo-
rating satellites (of different size and capabilities) and radio
communication between them. Each mission architecture
involves multiple spacecrafts, which imposes an especially
challenging design task. The authors of [33] suggested a
technique to automatically enumerate promising design
candidates with respect to the requirements, technical and
resource constraints, and mission objectives. Since the origi-
nal paper already used graph models and tools, we decided
to adapt this as the running example of the paper.

In this section, we first provide foundations of domain-
specific modeling languages (DSLs) and graph-based
instance models formalized as partial models using rela-
tional logic enhanced with integer linear constraints.

2.1 Domain-Specific Modeling Languages

A large set of industrial modeling tools (including e.g.,
Capella, Artop, Yakindu, Papyrus, etc.) use DSLs as concep-
tual foundation. The specification of a DSL typically starts
from defining a metamodel (MM) and a set of well-formedness
constraints (WF). A metamodel defines the main concepts
and relations in a domain imposing the basic graph struc-
ture of instance models. WF constraints further restrict consis-
tent (or valid) instance models of the language by defining

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1611

additional design rules. In this paper, we use the Eclipse
Modeling Framework (EMF) [34] metamodels and VIATRA

well-formedness constraints [10], [11] as a technical founda-
tion for domain modeling, which is also used in those
industrial tools above as well as in [33]. Conceptually, the
graph generation approach could be applied on other
modeling formalisms too, e.g., UML Class Diagrams for
defining the types and Object Constraint Language (OCL,
[9]) for defining constraints as in [19], [35].

Example. The metamodel for interferometry constellation
missions is shown in Fig. 1 using an EMF notation.
AnInterferometryMission consists of communicating Comm
Elements (as EClasses), which are equippedwithCommSubsys
subsystems (i.e., antennas with different communication fre-
quencies) through their subsys EReferences for Ka, X, and UHF
bands.

Spacecraft of different sizes, including cube satellites
Cube3U and Cube6U, as well as small satellites SmallSat,
may carry interferometry Payloads (photo sensors), and
must be able to reach the GroundStation via radio links (to
send sensor data) denoted by the target references.

As a foundation for generating consistent models first,
we need a precise formal framework to specify DSLs for
which purpose we rely on [7], [12], [14], [26], [30], [36].

Metamodels.
The metamodel defines the main concepts and relations

of the target domain.

Definition 1 (Metamodel). This formalism, in accordance
with the EMF standard, handles references as relations: edges
do not have identities and parallel edges of the same ERefer-
ence are not allowed. Since our current work focuses on model
generation for the structural part of graph models (i.e., nodes/
objects and edges/links), we omit the detailed handling of attrib-
utes, which could be introduced similarly. Additionally, we
introduce generator-specific concepts: a unary predicate "
denoting the existence of an object (in a normal model, each
object is existing), and a binary predicate � denoting the equiv-
alence of objects (in a normal model, each objects are different
from each other).

A metamodel also imposes several structural constraints
on instance models to enforce syntactic consistency for
model manipulation or model persistence operations:

1) Type Hierarchy (TH) expresses that a more specific
(child) class has every structural feature of the more
general (parent) class;

2) Type Compliance (TC) requires that for any relation
Rðo; tÞ, its source and target objects o and t must
have compliant types;

3) Abstract (ABS): If a class is defined as abstract, it is
not allowed to have direct instances;

4) Multiplicity (MUL) of structural features can be lim-
ited with upper and lower bound in the form of
“lower..upper”;

5) Inverse (INV) states that two parallel references of
opposite direction always occur in pairs.

6) Containment (CON): Instance models in EMF are
expected to be arranged into a containment hierar-
chy, which is a directed tree along relations marked
in the metamodel as containment (e.g., subsys or
payload). The containment hierarchy is particularly
relevant for serialization purposes.

Well-Formedness Constraints.
In many industrial modeling tools, domain-specific WF

constraints are defined by error predicates captured either as
OCL invariants [9] or as graph patterns [10], [37]. A major
practical subclass of such constraints can be formalized
using first-order logic with transitive closure [26], [32],
which can be efficiently evaluated by underlying query
engines like [11] to validate models, or formally analyzed
by model generators [7] to synthesize well-formed models.

Definition 2 (Syntax of graph predicate). A graph predi-
cate ’ is defined over a S vocabulary of a metamodel and an
infinite set of (object) variables V ¼ fv1; v2; . . .g using the fol-
lowing grammar rules:

’ :¼CðvÞjRðv1; v2Þ type and reference pred:

jv1 ¼ v2 equivalence

j:’ j’1 ^ ’2 j’1 _ ’2 logic connectives

j9v : ’ j 8v : ’ quantified expression

j’þðv1; v2Þ transitive closure:

Assuming that error patterns ’1; . . . ;’n are defined for a
domain, a model is consistent (or valid), if it does not satisfy
any error predicates ’iðv1; . . . ; vmÞ, i.e., :9v1; . . . ; vm :
’iðv1; . . . ; vmÞ = 8v1; . . . ; vm : :’iðv1; . . . ; vmÞ.

Error predicates ’1; . . . ;’8 in the satellite case study cap-
ture the following design rules of interferometry missions.

� A CommElement may only have a single transmit-
ting subsys (the other subsys, if present, may only
receive)

’1ðeÞ :¼ 9c1; c2 :subsysðe; c1Þ ^ subsysðe; c2Þ ^ c1 6¼ c2

^ �9t : targetðc1; tÞ� ^ �9t : targetðc2; tÞ�.

� The GroundStation can only receive and may not
have any outgoing communication links

’2ðgÞ :¼ 9c; t : GroundStationðgÞ ^ subsysðg; cÞ ^ targetðc; tÞ.

� At least two different Spacecrafts must have the
interferometry Payload configured

’3 :¼ 8s1; s2 ::
�9p : payloadðs1; pÞ

�
_ :�9p : payloadðs2; pÞ

� _ s1 ¼ s2.

Fig. 1. Example metamodel and WF constraint error pattern.

1612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

� All Spacecraft must have a communication path
(transitive closure of radio links) to theGroundStation

linkðs1; s2Þ :¼ 9c1; c2 : subsysðs1; c1Þ ^ subsysðs2; c2Þ
^ targetðs1; s2Þ,

’4ðsÞ :¼ SpacecraftðsÞ
^ �8g : :GroundStationðgÞ _ :linkþðs; gÞ�.

� There may be no communication loops, i.e., commu-
nication paths from a CommElement to itself

’5ðeÞ :¼ linkþðe; eÞ.

� CommSubsystems can only communicate if they use
the same frequency band

’6ðc1; c2Þ :¼ targetðc1; c2Þ
^ :�KaCommðc1Þ ^ KaCommðc2Þ

�
^ :�XCommðc1Þ ^ XCommðc2Þ

�
^ :�UHFCommðc1Þ ^ UHFCommðc2Þ

�
.

� Cube3U satellites can only cross-link (send data to
another satellite) using an UHFComm transmitter,
but can only communicate with the GroundStation
using a XComm transmitter

’7ðsÞ :¼ 9c1; c2; e :Cube3UðsÞ ^ subsysðs; c1Þ
^ subsysðe; c2Þ ^ targetðc1; c2Þ
^ :�UHFCommðc1Þ ^ SpacecraftðeÞ�
^ :�XCommðc1Þ ^GroundStationðeÞ�.

� Only a SmallSat or the GroundStationmay be config-
ured with a KaComm subsystem

’8ðeÞ :¼
�9s : subsysðe; sÞ ^ KaCommðsÞ�
^ :SmallSatðeÞ ^ :GroundStationðeÞ.

The error predicate ’8 is depicted on the right side of
Fig. 1 as a graph pattern using the graphical syntax of the
GROOVE graph transformation tool [38].

Because the structural constraints on metamodels can be
formalized as WF constraints [7] using the graph predicate
language of [26], [32], we can evaluate both kinds of con-
straints uniformly with first-order logic. However, as struc-
tural constraints are prevalent in modeling tasks, in the
following, we will exploit their special structure, especially
that ofMUL and CON constraints, to speed up model gener-
ation by numerical reasoning, while retaining full support
for arbitrary WF constraints.

Type Scopes.
To guide model generation towards more relevant mod-

els in a domain, type scopes are frequently used to specify
the number of required elements of each type (class). For
example, Alloy [12] introduces scope bounded analysis for

relational specifications. For larger models, prescribing
lower and upper bounds may ensure realistic distribution
of types in auto-generated test cases and benchmarks.

Type scope constraints define lower and upper bounds
for the number of instances generated for a specific class. A
lower type scope constraint Li � Ci and an upper type scope con-
straint Ci � Ui respectively assert that there are at least Li

and at most Ui instances of the class Ci (where Li; Ui 2 N).
We require that a generated model must satisfy the conjunc-
tion of all scope constraints of a given type.

Test and benchmark generation tasks require models of
some finite size n, whereas for proving the inconsistency of
modeling languages, cases up to a small size n are checked
according to the small scope assumption [12]. Therefore, we
assume the existence of an upper bound n on the number of
objects in the generated models, which can be seen as a type
scope bound on a common supertype of all types.

Our formulation of type scopes extends the notation of
scopes introduced in Alloy [12], which supports only upper
(Ci � Ui) and exact limits (Ci ¼ Ei) (but not lower bounds).
Alloy also limits type scopes and type hierarchy. If a type
scope is specified for a class Ci, its supertypes cannot have a
type scope. Scopes in Alloy cannot express problems where
the sums of (upper) type scope bounds do not coincide with
the number of objects (

P
i Ui > n), because the model size

n can only be specified as a type scope bound on the com-
mon supertype of all types. Therefore, these upper scope
constraints and all lower scope constraints need to be for-
mulated as additional constraints instead.

Given the constraints 30 � Spacecraft, Spacecraft � 50,
and SmallSat � 15 for our running example, generated
models may contain between 30 and 50 Spacecrafts. More-
over, at most 15 of these spacecrafts can be SmallSats.

2.2 Scoped Partial Models

In this paper, we introduce the concept of 3-valued scoped
partial models as an extension of partial models proposed
in [32]. The goal of partial models is to explicitly represent
uncertainty in models, thus a single partial model repre-
sents a set of potential (traditional) instance models. We
combine two techniques to capture uncertainty in a partial
model. First, 3-valued logic is used to explicitly represent
uncertain structural properties of models with a third 1=2
(unspecified or unknown) truth value (besides 1 and 0,
which stand for true and false) in accordance with [8], [26],
[39]. Second, quantitative information is attached to the partial
model to precisely represent the known (or required) size of
the models. Later, we use partial models as states of model
generation to represent intermediate solutions with uncer-
tain parts denoted with truth-value 1=2 and its size.

From a formal perspective, the first partial modeling
technique implements predicate abstraction [26], [40] on
graph models, while the second technique provides counter
abstraction [41], [42] on the nodes of the graph model.

Definition 3 (3-valued partial model). A 3-valued scoped
partial model is a tuple P ¼ hOP ; IP ;SP i, where OP is a
finite set of individuals in the model (i.e., the objects), IP ðSÞ :
OaðSÞ

P ! f0; 1; 1=2g provides a 3-valued interpretation for all
structural predicate symbols S 2 S (where aðSÞ is the arity

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1613

of the predicate symbol S), and the object scopes SP define
numerical constraints over OP .

Structural Predicates.
First, let us discuss the interpretation of structural predi-

cate symbols (IP) of partial models.

� Node (class) predicates: IP gives a 3-valued interpreta-
tion of each class symbol Ci in S: IP ðCiÞ : OP !
f1; 0; 1=2g that gives if it is true, false, or unspecified
if an object is an instance of a class Ci.

� Edge (reference) predicates: IP gives a 3-valued inter-
pretation to each reference symbol Rj in S: IP ðRjÞ :
OP �OP ! f1; 0; 1=2g, that gives if it is true, false, or
unspecified if there is a reference Rj between two
objects.

� Existence predicate: IP gives 3-valued interpretation
IP ð"Þ : OP ! f1; 1=2g to the " and predicates.
IP ð"ÞðxÞ ¼ 1 and 1=2 means certain or possible exis-
tence of object x.

� Equivalence predicate: IP also gives 3-valued interpre-
tation IP ð�Þ : OP �OP ! f1; 0; 1=2g to the � predi-
cate. IP ð�Þðx; yÞ ¼ 1, 0, and 1=2 mean that it is true,
false, or unknown whether x and y are equal.

In the context of model generation, we restrict the possi-
ble combination of those predicates to exclude inconsistent
and irrelevant constructs that are not productive as interme-
diate states of model generation.

Definition 4 (Structural Regularity). A partial model is
structurally regular if it satisfies the following criteria:

� Object merges are impossible, i.e., distinct objects x 6�
y (x; y 2 OP) are surely not equal: IP ð�Þðx; yÞ ¼ 0.

� There are no unmerged equivalent objects: if x; y 2
OP and IP ð�Þðx; yÞ ¼ 1, then x � y.

� There are no nonexistent objects, i.e., an object x 2
OP cannot be surely nonexistent: IP ð"ÞðxÞ 6¼ 0.

Table 1 summarizes the possible cases of uncertain exis-
tence and self-equivalence.

Fig. 2 shows three partial models. Truth values of class
predicates are denoted by labels on nodes (missing labels cor-
respond to 0 values). Reference predicates with 1 and 1=2 val-
ues are denotes as solid and dashed arrows, respectively.
Nodes with Dashed borders correspond to 1=2 values of the
existence " predicate. Uncertain equivalences are shown with
dashed � loops, but to reduce clutter, certain self-equivalen-
ces are not depicted. Thus, multi-objects have dashed
borders and dashed � loops and concrete objects are shown
with solid borders.

In P0 (on the left side of Fig. 2), the multi-object new3U

(with uncertain existence and self-equivalence) is certainly
of type Cube3U, but not of type CommSubsys.

Object Scopes.
Next, let us discuss the numerical constraints in a partial

model (SP in P ¼ hOP ; IP ;SP i). SP defines a system of lin-
ear inequalities over variables VP ¼ fbx jx 2 OPg associated
with the nodesOP of the partial model P .

Definition 5 (Assignment, Solution, Entailment). An
assignment k maps each variable bx 2 VP to a non-negative
integer k : VP ! N. If an assignment k satisfies the system of

linear inequalities of SP , then it is called a solution of SP

(written as k�SP). We write S1 �S2 for the entailment of
linear constraints, i.e., when every solution k�S1 also satisfies
k�S2.

The values of these variables represent the number of
concrete nodes that a single abstract node represents. If k :
VP ! N is a solution, then partial model P may represent a
concrete instance model M where each x 2 OP stands for
exactly kðbxÞ objects.

PartialmodelsP0 andP1 illustrated in Fig. 2 define two sys-
tems of linear inequalities (SP0 and SP1 respectively) over the
same three variables: dnew3U, dnewX and dnewUHF. InSP0 , the lin-
ear equation dnew3U þ dnewX þ dnewUHF ¼ 10 ensures that P0

represent instance models with exactly 10 objects. A potential
variable assignment k : dnew3U 7! 4; dnewX 7! 3; dnewUHF 7! 3 is
a possible solution of both SP0 and SP1 , and represent models
with 4 3U, 3 X and 3 UHF objects. As SP1 contains more con-
straints than SP0 , SP1 �SP0 is holds trivially. However,
SP0�SP1 is not true as k0 : dnew3U 7! 10; dnewX 7! 0;
dnewUHF 7! 0 is a solution for SP0 but not for SP1 .
The regularity criteria of scoped partial models ensures

consistency of IP and the object scopes SP .

Definition 6 (Numerical regularity). A partial model P
is numerically regular, if SP is satisfiable, and for each object
x 2 OP

IP ð�Þðx; xÞ ¼ 1) SP � ½bx � 1�
IP ð"ÞðxÞ ¼ 1) SP � ½bx 	 1�:

Therefore SP carries at least as precise numerical informa-
tion about the (multi-)objects as IP . Table 1 summarizes the
possible combinations of existence, equivalence and scopes.

A partial model is regular if it is both structurally and
numerically regular. In the following, all partial models will
be assumed to be regular.

2.3 Refinement and Concretization of PMs

We carry out model generation along a sequence of refine-
ment steps that derive new partial models by increasing
their size but gradually reducing the level of uncertainty in
each model while continuously checking (an approximated
version of) well-formedness and scope constraints. Thus we
introduce the formal concept of refinement for scoped par-
tial models which simultaneously refines both the 3-valued
logic structure and the system of linear inequalities.

First, during refinement, unknown 1=2 values are refined
to either 0 or 1, according to the refinement ordering relation.

Definition 7 (Logic value refinement). A truth value Y is a
refinement of X (formally X < Y), where either X ¼ 1=2 as it is

TABLE 1
Explanation for Existence and Self-Equivalence Predicates

"ðxÞ x � x Description Symbol Regularity criteria

1 1 concrete object [1..1] SP � bx ¼ 1
1=2 1 uncertain, concrete [0..1] SP � bx � 1
1 1=2 multi-object [1..
] SP � bx 	 1
1=2

1=2 uncertain, multi [0..
] unrestricted

1614 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

refined into Y ¼ 1 or 0, or X ¼ Y remains unchanged:
X < Y :¼ ðX ¼ 1=2Þ _ ðX ¼ Y Þ.
Logic refinement is defined between the logic structures

associated with partial model, where some 1=2 values in the
interpretation IP of a partial model P is refined into either
1 or 0 values. Informally, during refinement between struc-
turally regular partial models, (i) objects with 1=2 values for
� may be split into multiple objects, (ii) objects with 1=2 val-
ues for " may disappear, (iii) and class or reference predi-
cates with 1=2 values are refined to 1 or 0.

Definition 8 (Logic structure refinement). Given an
abstraction function abs : OQ ! OP , a logic interpretation
IQ of a partial model Q refines a logic interpretation IP of P
(denoted by IP < abs IQ) if for each n-ary predicate symbol S 2
S (type, reference, equivalence and existence) and for each
o1; . . . ; on 2 OQ

IP ðSÞðabsðo1Þ; . . . ; absðonÞÞ < abs IQðSÞðo1; . . . ; onÞ:

Moreover, existing objects cannot be removed

8p 2 OP : "ðpÞ) ð9q 2 OQ : absðqÞ ¼ pÞ:

During refinement, the linear inequality systems are also
refined with respect to the entailment relation. Informally,
during the refinement of SP into SQ, it (i) may split some of
variables into the sum of multiple variables (e.g., all occur-
rences of a variable bx in SP are replaced with bx1 þ bx2 þ bx3 in
SQ), and (ii) it may induce stricter constraint over the varia-
bles (e.g., bx � 3 is refined to 1 � bx � 2).

Definition 9 (Linear inequality system refinement).
Given an abstraction function abs : OQ ! OP , a linear linear
inequality system SQ of partial modelQ is a refinement of SP of
P (denoted by SP < abs SQ) if SQ �Sabs

P , where Sabs
P denotes the

system of linear inequalities obtained from SP by replacing every
occurrence of each variable bx 2 OP with

Pfby j absðyÞ ¼ xg.
In this paper, we define the refinement of 3-valued

scoped partial models using 3-valued scoped partial models
using simultaneous logic structure refinement and linear
inequality refinement. Conceptually, each model generation
step will carry out such a refinement thus making the model
larger but less uncertain.

Definition 10 (Partial model refinement). A 3-valued par-
tial model Q ¼ hOQ; IQ;SQi refines a partial model P ¼
hOP ; IP ;SP i (denoted as P < Q) if there is an abstraction func-
tion abs : OQ ! OP where

IP < abs IQ and SP < abs SQ:

If a 3-valued partial model M only contains 1 and 0 val-
ues, then M represents a traditional (concrete) instance
model. In an instance model, SM � bx ¼ 1 for all x 2 OM due
to numerical regularity, i.e., each object is concrete.

Fig. 2 depicts three refinements P0 < P1, P1 < P2, and
P2 < P3. P0 and P1 have the same object set (OP0 ¼ OP1) and
graph structure. Therefore, the abstraction function abs1 :
OP1 ! OP0 is the identity function. Compared to SP0 , SP1

contains an additional linear equation. Every solution of SP0

is also a solution of SP1 , which ensures P0 < P1.
The abstraction function abs2 : OP2 ! OP1 maps new3U,

newX, newUHF to the objects in P1 with the same identifiers,
while abs2ðx1Þ ¼ new3U and abs2ðx2Þ ¼ newUHF. The objects
x1 and x2 were split from new3U and newUHF, respectively.
To obtain SP2 , we replaced each occurrence of dnew3U and
dnewUFH with dnew3U þ bx1 and dnewUFH þ bx2. Furthermore, the

constant 1 replaces occurrences of bx1 and bx2, because bx1 ¼bx2 ¼ 1 (x1 and x2 are concrete objects). As there are no new
linear equations, SP2 is otherwise equivalent to SP2 .

In P2 < P3, x3 replaces the multi-object new3U with x3, i.e.,
abs3ðx3Þ ¼ new3U, while all other objects of P3 are mapped
to the object with the same name in P2.

Refinement is transitive, i.e., if P1 < P2 and P2 < P3 with
the abstraction functions abs1 : OP2 ! OP1 and abs2 : OP3 !
OP2 , then P1 < P3 with the abstraction function abs1 � abs2.
Hence after a chain of refinements P0 < P1 < � � � < M, we
may obtain a concrete model M. Such a refinement chain
will be constructed during model generation.

2.4 Predicate Evaluation Over Partial Models

While constraints expressed in first-order graph logic with
transitive closure can be easily evaluated over concrete
graph models (with true or false outcome), the evaluation
of graph predicates over partial models naturally has a
3-valued semantics.

Definition 11 (Semantics of graph predicates). The
semantics of a graph predicate ’ðv1; . . . ; vnÞ over a partial model

Fig. 2. Scoped partial models and their refinements. Linear equation systems were simplified by carrying out substitutions for conciseness.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1615

P with variable bindingZ is denoted with ½½’ðv1; . . . ; vnÞ��PZ , and
defined as follows:

½½CðvÞ��PZ :¼ IP ðCÞðZðvÞÞ
½½Rðv1; v2Þ��PZ :¼ IP ðRÞðZðv1Þ; Zðv2ÞÞ

½½"ðvÞ��PZ :¼ IP ð"ÞðZðvÞÞ
½½v1 ¼ v2��PZ :¼ IP ð�ÞðZðv1Þ; Zðv2ÞÞ

½½:’��PZ :¼ 1 ½½’��PZ
½½’1 ^ ’2��PZ :¼ min ð½½’1��PZ ; ½½’2��PZÞ
½½’1 _ ’2��PZ :¼ max ð½½’1��PZ; ½½’2��PZÞ
½½9v : ’��PZ :¼ minf½½"ðvÞ ^ ’��PZ;v 7! o j o 2 OPg
½½8v : ’��PZ :¼ max f½½:"ðvÞ _ ’��PZ;v 7! o j o 2 OPg

½½’þðv1; v2Þ��PZ :¼ max f½½9m1; . . . ;mn :

Rðv1;m1Þ ^ . . . ^Rðmn; v2Þ��PZ jn 2 Ng:

Note that graph predicates can be approximately evaluated
directly on partial models by predicate rewriting [26] with-
out materializing all potential concrete models.

When an error predicate ’ evaluates to true along vari-
able binding Z, i.e., ½½’��PZ ¼ 1 then this binding Z is called a
match of ’ in P . If an error predicate ’ has a match in P ,
then this violation is already a proof of inconsistency.

Definition 12 (Structural (in)consistency of a partial
model). Given a partial model P and a set of error predicates
’1; . . .;’k, a partial model P is structurally inconsistent if
there exists ’i and a binding Z where ’i has a match in P , i.e.,
½½’i��PZ ¼ 1. A partial model is structurally consistent if
½½’i��PZ ¼ 0 for all ’i and Z.

Due to the incompleteness, a partial model can poten-
tially be neither structurally consistent, nor structurally
inconsistent during partial model refinement. However, our
model generation approach can avoid inconsistent partial
solutions during model generation by approximation of predi-
cates, so the consistency can be checked before a concrete
instance model is obtained.

2.4.1 Approximation of Logic Predicates

In [8], [32], we defined over- and under-approximations of
predicates over partial models to drive the model generation
process along meaningful refinements. If an error predicate ’

is surely satisfied in a partialmodel P (½½’��PZ ¼ 1, under-approx-
imation of errors), thenno concrete instancemodelM obtained
from P by a refinement P < M can be structurally consis-
tent [8]. Thus, partial model P can be safely dropped from the
set of candidate intermediate solutions without discarding
any valid instance models, and model generation needs to
continue along a different refinement chain.

Theorem 1 (Forward refinement of predicates [8]). Let
’ðv1; . . . ; vkÞ be a logic expression, P and Q partial models,
where P < Q through abs : OQ ! OP , and Z : fv1; . . . ; vkg !
OQ a variable binding.

� If ½½’��Pabs�Z ¼ 1, then ½½’��QZ ¼ 1.

� If ½½’��Pabs�Z ¼ 0, then ½½’��QZ ¼ 0.

One can establish a dual over-approximation property for
the validity of Q, which ensures that no valid model will
marked as invalid (and vice versa):

Theorem 2 (Backward refinement of predicates [8]). Let
’ðv1; . . . ; vkÞ be a logic expression, P and Q partial models,
where P < Q through abs : OQ ! OP , and Z : fv1; . . . ; vkg !
OQ a variable binding.

� If ½½’��QZ ¼ 1, then ½½’��Pabs�Z 	 1=2.

� If ½½’��QZ ¼ 0, then ½½’��Pabs�Z � 1=2.

2.4.2 Approximation of Scope Constraints

In scoped partial models, analogous properties hold for the
constraints imposed on multi-objects by object scopes SP .

For that purpose, we introduce the notation #
1=2
v ½½’��PZ to cap-

ture the number of concrete objects and multi-objects that

may satisfy ’. Moreover, #1
v ½½’��PZ represents the number of

those that must satisfy ’. In a concrete model, these two for-
mulas coincide, and they are equal to the number of con-
crete objects that satisfy ’.

Definition 13 (Number of matching objects). Given a
logic formula ’ðu1; . . . ; uk; vÞ and variable binding Z :
fu1; . . . ; ukg ! OP (which only excludes v),

#
1=2
v ½½’��PZ :¼

X
fbxi jxi 2 OP ; ½½’��PZ;v 7! xi

	 1=2g;

denotes the sum of scope variables bxi associated with objects xi

that may satisfy ’. Analogously,

#1
v ½½’��PZ :¼

X
fbx jx 2 OP ; ½½’��PZ;v 7! x ¼ 1g;

is the sum of scope variables associated with objects that surely
satisfy ’.

For example, if fx1; . . . ; xmg ¼ fxi 2 OP j ½½’��PZ;v 7! xi
	 1=2g

are the objects that possibly satisfy ’, then the linear inequality

L � bx1 þ � � � þ cxm � U can bewritten asL � #
1=2
v ½½’��PZ � U .

In P2 in Fig. 2,#
1=2
s ½½9c : subsysðs; cÞ��P2 ¼ dnew3U þ bx1 is the

linear expression for the number of objects that may have an
outgoing subsys reference. #1

s ½½9c : subsysðs; cÞ��P2 ¼ bx1 is
the number of objects that surely have an outgoing subsys
reference. (The empty variable binding Z ¼ ; was omitted
from the notation for conciseness.)

Now we can evaluate type scope bounds on partial mod-
els checking linear inequalities on the objects scopes in a
partial model P .

Definition 14 (Scope (in)consistency of a partial
model). Given a partial model P and a set of type scope
bounds fLi � Ci � Ui j i ¼ 1; . . . ;mg, P is scope inconsis-
tent if there exists a type scope bound Li � Ci � Ui such

that SP �#
1=2
v ½½CiðvÞ��P < Li or SP �#1

v ½½CiðvÞ��P > Ui. P is

scope consistent if SP �#1
v ½½CiðvÞ��P 	 Li and

SP �#
1=2
v ½½CiðvÞ��P � Ui for all i ¼ 1; . . . ;m.

A partial model can potentially by neither scope consis-
tent, nor scope inconsistent during partial model refine-

ment. On a concrete model M, SM �#
1=2
v ½½CiðvÞ��P and

SM �#1
v ½½CiðvÞ��P coincide, and correspond the to the

1616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

number of objects of type Ci. Hence scope consistent con-
crete models indeed satisfy all type scope bounds.

Now we can over- and under-approximate scope con-
straints on partial models and maintain scope consistency
during model generation as follows:

Theorem 3 (Forward refinement of scopes). Let ’ be a
logic expression, and P and Q partial models where P < Q
through the abstraction function abs : OQ ! OP , and L;U 2
Z. Then the following implications hold:

SP �#
1=2
v ½½’��Pabs�Z < L)SQ �#

1=2
v ½½’��QZ < L, (i)

SP �#1
v ½½’��Pabs�Z > U)SQ �#1

v ½½’��QZ > U, (ii);

i.e., (i) when objects thatmay satisfy ’ violate a lower bound L
in P , they also violate it in any refined partial model Q, and
(ii) objects that must satisfy ’ similarly carry forward the vio-
lation of the upper bound U .

Therefore, if a partial model P is scope inconsistent, it
can be safely dropped from the set of potential intermediate
solutions, as all of its refinements remain scope inconsistent.

Dually, if Q is scope consistent P < Q, then P cannot be
scope inconsistent. This statement, formalized below, is the
over-approximation of validity for scope constraints.

Theorem 4 (Backward refinement of scopes). Let ’ be a
logic expression, and P and Q partial models where P < Q
along the abstraction function abs : OQ ! OP , and L;U 2 Z.
Then the following implications hold:

SQ �#1
v ½½’��QZ 	 L)SP 2#

1=2
v ½½’��Pabs�Z < L,

SQ �#
1=2
v ½½’��QZ � U)SP 2#1

v ½½’��Pabs�Z > U.

The forward and backward refinement properties enable
the generation of structurally and scope consistent models
along partial model refinements, where WF and scope con-
straints are approximately checked. Theorems 1, 2, 3, and 4,
as discussed in Section 3.6, ensure the correctness and com-
pleteness of the process.

3 MODEL GENERATION WITH SCOPE REASONING

In this section we exploit numerical information present in
object scopes of PMs to efficiently generate large instance
models that satisfy type scope bounds, as well as structural
and WF constraints. We combine techniques from advanced
graph query processing, SAT solving and integer programming
to tackle the scalability problems of existing graph genera-
tion approaches.

As the core conceptual contribution of the current paper,
we combine the evaluation of relational constraints and
numerical reasoning with object scopes by propagating
information between 3-valued logic interpretation and
objects scopes of the partial model. The intuition behind
this idea is that while constraints expressed as object scopes
are not as expressive as those captured in relational logic,
dedicated numerical solvers allow earlier detection of con-
straint violations by considering the global effects of all con-
straints on the number of objects in the generated instance
models at the same time. Therefore, the evaluation of the
original WF constraints on the partial models and the scope
analysis are complementary to each other.

As a summary, object scopes will allow early detection of
partial models that cannot be completed to an instance
model due to the inappropriate number (e.g., too few or too
many) of objects, while WF constraint evaluation will
enforce more complex structural validation rules.

3.1 Model Generation Process

We propose a model generation process (shown in Fig. 3)
based on partial modelswith object scopes that can exploit the
numeric information present in scoped partial models. The
generation starts froman initial partialmodel, which is gradu-
ally refined until it obtains a concrete model satisfying the
generation objectives defined by the number of required
objects and the WF constraints. Thus, the generator explores
the state space formed by partial models that are reachable by
refinement, which ensures that isomorphic states are explored
only once. Our generator has the following components:

� The initial partial model (1) is the starting point of the
generation, which express type scope constraints as
object scopes. It is either set to the most general
(maximally underspecified) partial model or to a
partial snapshot model provided by an engineer
which is to be extended by the generator. The other
inputs of the generator are the type scope bounds (2)
and the structural and WF constraints (3) to be satis-
fied by the generated models.

� Refinement operators include decision rules, unit prop-
agation rules and scope propagator rules to obtain
new PMs from already discovered ones.
– Decisions add new information to the PM and

unit propagations enforce the necessary conse-
quences of decisions by evaluating structural
and WF constraints using the 3-valued interpre-
tation. For decisions and unit propagations, we
reuse the set of operators (4) defined by the

Fig. 3. Block diagram of the model generator. Blocks interacting with object scopes are shaded for emphasis.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1617

GraphSolver (GS) [32] (which were proved to be
sound and complete).

– Scope propagators (5) restrict object scopes accord-
ing to type scope bounds, structural, andWF con-
straints. This gives an opportunity for numerical
reasoningwith the new object scope information.

� Object scope analysis (6) performs numerical reason-
ing using state-of-the-art integer programming (IP)
and linear programming (LP) techniques on object
scopes. The results of numerical reasoning are fed
back to the partial model and the best-first search
strategy.

� 3-valued logic semantics (7) are exploited to over- and
under-approximate WF constraint violations. PMs that
cannot be repaired by refinement (i.e., which surely
violate a constraint) are discarded by backtracking.
– The constraint evaluation component uses an effi-

cient, incremental graph query engine [11], [43] to
ensure the scalability of this step.1

– Unsatisfiable objects scopes, which are caused by
type scope or WF constraint violations that can-
not be repaired by refinement, are discarded by
backtracking according to Theorems 1, 2, 3, and 4.
Detecting these violations as early as possible is
crucial for reducing the traversed state space.

� Isomorphic PMs reached by different refinements
are detected by state coding (8) based on graph
shapes [47], which ensures that isomorphic states are
explored only once.

� Heuristic best-first search (9) combinedwith backjump-
ing and random restarts preferentially investigates
PMs that can be quickly refined into valid concrete
models. Object scope analysis allows selecting such
PMs more accurately than existing approaches that
only rely on 3-valued interpretation.

� When a structurally (Definition 12) and scope consis-
tent (Definition 14) concrete model (10) is found, it is
recorded as output. The generation is either termi-
nated, or (if additional models are desired) the
search is resumed after backtracking (as if the found
solution was invalid). For the collected outputs, the
solution management features of GraphSolver, which
can ensure the diversity of the models [20], can be
leveraged.

Next, we discuss the key novel components of our gener-
ator in more details.

3.2 Initial Scoped PM

Model generation starts from an initial partial model Pinit,
which is a common abstraction of all possible concrete
instance models of the metamodel. In Pinit,

� there is an object newi for each non-abstract class Ci,
i.e., OPinit ¼ fnewi jCi 2 Sg;

� for each Ci, newi is multi, i.e., IPinitð"ÞðnewiÞ ¼ 1=2
and IPinitð�Þðnewi; newiÞ ¼ 1=2; and

� IPinitðCiÞðnewiÞ ¼ 1 (newi is an instance of Ci).
Other class Cj and reference Rk predicates are set to 1 or

0 wherever required by type hierarchy and conformance
constraints. Otherwise they are set to 1=2.

The object scopes SPinit in the initial PM introduce a vari-
able dnewi for each class Ci, which allows expressing type
scope bounds directly.

If model generation extends an initial partial snapshot, it
can also be incorporated into Pinit. For each given object xi,
SPinit contains the equality bxi ¼ 1 to mark xi as a concrete
object with exactly one instance. Interpretation of type and
reference predicates between given objects are set in accor-
dance with the initial partial snapshot, while reference
predicates leading between new objects are 1=2.

The partial model P0 in Fig. 2 is a fragment of the initial
partial model Pinit for generating instances of the satellite
metamodel in Fig. 1. The multi-objects new3U, newX, and
newUHF correspond to the classes Cube3U, XComm, and
UHFComm. In SP0 ¼ f dnew3U þ dnew3U þ dnew3U ¼ 10g, the
linear equation (marked as #n in Fig. 2) encodes that models
with exactly 10 objects shall be generated.

3.3 Scope Propagation

Scope propagation refines the partial model P ¼ hOP ; IP ;
SP i into a new partial model P < Q ¼ hOP ; IP ;SP [Si,
where S is a set of linear inequalities deduced from P , type
scope bounds, as well as structural and WF constraints.
Because the inequalities are necessary consequences of the
constraints, every consistent concrete model P < M, satisfies
them. Therefore each consistent instance model M is also a
refinement of Q.

Table 2 summarizes the rules used to deduce linear
inequalities implied by type scope bounds and structural
metamodel constraints from the partial model. In the table,
the relation � refers to the usual implication order 0 � 1=2 � 1
of truth values (and not the refinement order <).

Fig. 2, the linear equations (sp1-sp3) in SP1 were obtained
from P0 and the type scope bound 5 � CommSubsys by
scope propagation. The lower type scope bound CommSubsys
implies (sp1). By applying the containment hierarchy, lower
and upper bound rules to the containment reference subsys
[1..2] according to the multiplicity bounds defined in Fig. 1,
yielding the linear equations (sp2) and (sp3)

Other WF constraints which have numerical consequen-
ces can also be translated to object scopes by adding object
scope constraints corresponding to lower and upper bounds
of the number of objects allowed by the constraint.

Consider the error predicate ’8ðeÞ :¼
�9s : subsysðe; sÞ ^

KaCommðsÞ� ^ :SmallSatðeÞ ^ :GroundStationðeÞ. Because
subsys is a containment reference, ’8 enforces that each
KaComm instance be contained in a SmallSat or a
GroundStation. Due to the upper multiplicity bound of 2,
for each SmallSat or GroundStation, there may be no more
than 2 KaComm instances. We obtain the following scope
propagation rule as the linearization of ’8:

#1
u½½KaCommðuÞ��P �

2 �#1=2
v ½½SmallSatðvÞ _GroundStationðvÞ��P .

1. The incremental graph query engine requires in-place updates to
the partial model, which is (technologically) limited to be single-
threaded. Nevertheless, it is possible to parallelize incremental query
evaluation [44], [45], as well as to maintain several partial models for
parallel state space exploration [46]. Integrating these improvements to
the solver is in the scope of future work.

1618 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

In our current implementation, the user needs to manu-
ally provide linear inequality versions of well-formedness
constraints to exploit them during object scope propagation.
A higher level of automatization seems feasible (similarly as
in [48]) and is in the scope of future work.

3.4 Object Scope Analysis

Object scope analysis is responsible for numerical reasoning
with object scope constraints, which guides model genera-
tion and refines the interpretation IP . The refined relations
may allow applying further unit and scope propagation
operators, which in turn are opportunities for further scope
analysis. The analysis requires efficient maintenance and
solution of linear constraints.

Linear Constraint Maintenance. As the size of the partial
model P grows, the number of variables and constraints in
SP may also grow. Two techniques reduce the size of SP to
improve analysis. First, concrete objects always stand for a
single object (SP � x ¼ 1 if x is concrete). Instead of explic-
itly storing coefficients of a variable x for each concrete
object and linear constraint, occurrences of x are replaced
with the constant 1. Thus, the number of variables equals to
the number of multi-objects, which usually does not grow
during model generation.

Second, redundant linear inequalities are eliminated to pre-
vent the number of scope constraints from growing indefi-
nitely, exploiting the following two properties: (i) In our
decision and scope propagation rules [32], no new multi-
objects are added to the partial model. (ii) In our object scope
analysis rules, the coefficients of multi-object variables only
depend on the meta-model. This results in many pairs of con-
straints of the form L1 � a1 bx1 þ � � � þ ancxn � U1 and L2 �
a1 bx1 þ � � � þ ancxn � U2, which can be replaced by
maxfL1; L2g � a1 bx1 þ � � � þ ancxn � minfU1; U2g.

Numerical Reasoning. Numerical reasoning carried out by
object scope analysis (i) discovers refinements of the

existence " and equivalence � relations implied by the
object scopes, (ii) initiates backtracking on unsatisfiable
object scopes, and (iii) calculates a heuristic for guiding
the search based on the number of objects required to finish
the model.

Scopes are analyzed to find lower and upper bounds of
object scope variables x associated with each object x 2 Ox.
If the lower bound is positive (SP � bx 	 1), x represents at
least one object and cannot be removed from P . We set
IP ð"ÞðxÞ ¼ 1 to record this fact. If the upper bound is 1
(SP � bx � 1), x represents at most one object, implying
IP ð�Þðx; xÞ ¼ 1. Lastly, an upper bound of 0 (SP � bx � 0)
means x can be removed from P .

If a contradiction is detected when obtaining variable
bounds, there is no instance model represented by the
scoped PM P . The generator discards P and backtracks.

Otherwise, the sum of lower bounds is used as a heuristic
in best-first search to approximate the number of decisions
still required to obtain a valid instance model. This heuristic
prefers the creation of smaller models when possible. How-
ever, due to the randomized state-space exploration, it does
not guarantee models of minimum size.

In Fig. 2, the linear equations (sa), which represent feasi-
ble lower and upper bounds of the object scopes, were
obtained by scope analysis of SP1 n f(sa)g.

Scope analysis of P3 detects an inconsistency (highlighted
in red in Fig. 2) caused by the unsatisfiable object scopes SP3 .
No refinement of P3 is a valid instance model. Therefore P3

can be safely discarded by backtracking.

3.5 Scope Analysis Methods

We propose three methods for the reasoning, which are
shown in Table 3. The Type hierarchy based analysis can only
handle linear equations derived from type scope bounds. It
is a quick preliminary step that can detect some contradic-
tions early without invoking an external solver. Analysis

TABLE 2
Scope Propagation Rules for Type Scope Bounds and Structural Constraints

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1619

with Integer Programming and Linear Programming solvers is
considerably more precise, and handles any linear equa-
tions. However, the invocation of the external solver may be
costly, especially in the case of IP, which is NP-complete. In
Section 4, we compare the effectiveness of these approaches.

Type hierarchy based scope analysis analyses linear equa-
tions coming from type scope bounds, which are always of
the form Li � bx1 þ � � � þ bxk � Ui (Table 2). Exploiting that
all variables in SP are nonnegative, the inequalities Li �bx1 þ � � � þ bxk � Ui and Lj � bx1 þ � � � þ bxk þ � � � þ cxm � Uj,
which are formed when Ci is a subtype of Cj, can
be replaced with Lj � bx1 þ � � � þ bxk � minfUi; Ujg and
maxfLi; Ljg � bx1 þ � � � þ bxk þ � � � þ cxm � Uj. This process is
performed for each pair of compatible inequalities until no
more bounds can be tightened. Contradiction is detected
when the lower bound of some inequality becomes larger
than the upper bound.

Integer programming solvers are used for scope analysis
by translating the object scope constraints into an IP prob-
lem and repeatedly solving for lower and upper bounds of
variables. Formally, for all object x 2 OP , the problems

xmin ¼ min bx, xmax ¼ max bx,
s.t. SP , s.t. SP ,

8y 2 OP : by 2 N, 8y 2 OP : by 2 N;

are solved and the inequality xmin � bx � xmax is added to
SP . Results of solver calls are cached to reduce invocations.

Linear Programming. By replacing the set of natural num-
bers N with the nonnegative reals R	0, the LP relaxation of
the problem is obtained. In contrast with IP, LP can be
solved in polynomial time. However, the obtained bounds
for scope variables may not be as accurate, and opportuni-
ties for backtracking or refinement of the " and � predicates
may be detected later. In order to detect these opportunities
as early as possible, we rely on the fact that the number of
object represented by a multi-object is always an integer.
When the relaxation produces an inexact solution with non-
integer xmin or xmax, the solution is rounded to assert the
constraint dxmine � bx � bxmaxc.

3.6 Correctness and Completeness

As the main benefit of 3-valued PMs, a multi-object may rep-
resent multiple separate, unequal concrete objects in an
instance model. As such, even sets of very large instance
models can be abstracted by a small PM, which enables the
model generator to use a concise representation of their
state as a scoped partial model.

Based on Section 2.4, logic constraints can be approxi-
mately evaluated over intermediate solutions. Forward-
and backward approximation theorems Theorems 1 and 3

ensure that if a partial model violates a WF or scope con-
straint, all refinements of that intermediate solution will
also surely violate it, thus it can be safely discarded. WF
and scope constraints are also directly evaluated on all fin-
ished (concrete) models, thus ensuring the correctness of the
approach, i.e., all generated models are instances of the
metamodel, and satisfy all WF and scope constraints.

Additionally, according to Theorems 2 and 4, if there is a
valid concretization of an intermediate model, the partial
model will not be discarded due to WF and scope constraint
violations. In a bounded scope, all valid partial models will
be considered [8]. Therefore, the approach is completewithin
a bounded scope (i.e., when models up to a finite size are
sought) and it will explore all valid solutions.

While multiplicity reasoning can greatly increase the per-
formance the model generator, the descriptive power of
ordinary PMs is limited to linear constraints. This limits the
multiplicity reasoning on simple scopes, but ensures that
the numerical problems can be efficiently solved in each
step of model generation.

4 EXPERIMENTAL EVALUATION

We carried out an experimental evaluation of generating
consistent instance models with multiplicity reasoning pro-
vided by object scopes to address the following research
questions:

RQ1 How effective are the different scope analysis techni-
ques for model generation in terms of execution
time?

RQ2 How does our approach scale in execution time on
satisfiable problems...

RQ2.1 ...in the presence of type scope bounds?

RQ2.2 ...with unbounded type scopes?

RQ3 How does our approach scale in execution time on
unsatisfiable problems?

RQ4 To what extent can type scope bounds help in gener-
ating models with realistic type distributions?

4.1 Domains

Due to the absence of systematically constructed perfor-
mance benchmarks for the evaluation model generation for
DSLs, we evaluated our approach in the context of 3 differ-
ent domains (and the corresponding DSLs) that include
complex structural and WF constraints. The first domain
served as the running example in this paper (Fig. 1):

� SAT is the design space exploration challenge intro-
duced by researchers at NASA Jet Propulsion
Lab [33]. As a specific characteristic of this case
study, structural constraints specify the number of
CommSubsystems and Payloads that can be fitted
to a number of Spacecraft, while WF constraints
encode additional design rules concerning the satel-
lite communication network.

TABLE 3
Scope Analysis Methods

Type scope Structural Other WF

Type hierarchy � � �
IP solver � � �
LP solver � � �
Legend: � = not supported, � = supported

1620 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

Two additional case studies exemplify test generation
scenarios for industrial modeling tools:

� SCT: Yakindu is an industrial modeling environment
for statecharts [49]. This scenario represents generat-
ing tests for a concrete modeling tool (Yakindu State-
charts). The WF constraints of the language help
avoiding common semantic errors (e.g., the lack of
an Entry object signifying state). As a specific charac-
teristic of this case study, most constraints can partic-
ipate in object scope propagation (after linearization)
to determine the possible numbers of objects (e.g.,
the Entry and its outgoing Transition instance that
denotes the initial state).

� MET: Ecore is the meta-modeling language of
EMF [34]. This scenario represents test generation
for a modeling framework (e.g., code generation and
persistency). As a specific characteristic, while this
case study uses a large number of classes in a com-
plex inheritance hierarchy along with WF con-
straints, only few of them can be translated into
linear inequalities for scope propagation.

In addition to their practical relevance, the these two lan-
guages have been used as case studies by multiple model
generation papers [32], [36], [50], [51], [52], [53].

4.2 Scope Analysis Methods

Setup. This experiment aims at determining which scope analysis
method should test engineers use for scalable model generation.
We generated models containing up to 100 objects in the
SAT domain.

The original GraphSolver (GS/O) served as a baseline
(with type scopes translated to WF constraints). We evalu-
ated the Type Hierarchy (GS/S/TH) scope analysis method,
which relies on no external solver, in addition to the Integer
Programming (GS/S/IP) and Linear Programming (GS/S/LP)
methods. We selected external solvers widely used in
industry and research from the COIN-OR suite: COIN-OR
Branch and Cut v2.9.9 for GS/S/IP and COIN-OR Linear Pro-
gramming Solver v1.16.10 forGS/S/LP.2

As there were no manually created models available for
SAT, type scope bounds derived from engineering expecta-
tion. When specifying the type scope bounds, we ensured
that they were satisfiable, i.e., a valid model exists with the
specified number of objects. Unsatisfiable scope bounds are
quickly detected by the IP/LP sovers, but cause other
approaches to explore a very large number of partial models.

A timeout of 5 minutes was set for each model generation
with increasing model sizes. Runs for a given model size
were repeated 30 times to account for variance caused by
the random exploration and backjumping employed in the
generator, as well as the runtime environment.

We also accounted for warm-up effects and memory han-
dling of the Java 11 virtual machine (JVM).Mitigating warm-
up effects for benchmarks of small programs (execution time

< 2 s) may need a large number of runs [55]. However, since
our macrobenchmarks for the scalability evaluation GS and
A had much longer execution times (up to 300 s), 10 extra
runs before the actual measurements and explicit garbage
collector calls between runs were sufficient for the stabiliza-
tion of performance.

All measurements were executed on a high-performance
server (2 � AMD EPYC 7551 32-core, 64-thread 2 GHz CPU,
512 GiB RAM) with a hard memory limit of 32 GiB, 16 GiB
of which were assigned to the JVM heap to account for addi-
tional memory usage by IP and LP solvers. While the model
generator is single threaded, parallel garbage collection of
the JVM could take advantage of the 8 CPU cores (16 hard-
ware threads) assigned to a measurement.

Results. The median running times of the approaches for
different model sizes are shown in Fig. 10.

GS/O frequently ran out of the 300 s limit when generating
models larger than 30 objects. Timeouts were less frequent in
the case of 20 and 40 objects, which caused the median execu-
tion time of all runs (including timed out ones) to be discontin-
uous. This phenomenon can be partially explained by the
interaction of type scope bounds and structural multiplicity
constraints in SAT, which are somewhat easier to satisfy for
these model sizes.GS/S/TH only reached the time limit for 80
and 90 objects. The median execution times for GS/S/IP and
GS/S/LP were much smaller, not exceeding 65 s to generate
modelswith 100 objects. Thismakes them the only approaches
that were able to producemodels of this size.

For all approaches, most of the execution time was spent
in the decision and scope propagation, state coding, and
exploration steps. The overhead of scope analysis remained
below 3.1 s even for the largest generated models, which is
negligible compared to other phases of model generation.

RA1 Object scope analysis can significantly reduce both
the execution time and the state space of model genera-
tion. Linear programming can provide the largest reduc-
tions with only a minor overhead of external solver calls.

For models with 90 elements, TH scope analysis reduced
number of states (partial models) explored during success-
ful model generation from 41 000 (GS/O) to 36 000. IP and
LP further reduced this to around 4,000 states, indicating
the effectiveness of scope analysis in discarding partial
models with no valid concretization. While IP and LP
reduced the state space virtually identically, linear pro-
gramming (LP) was slightly faster: The overall runtime of
the external solver was 1.7 s when generating 100-object
models compared to the 3.1 s of IP.

4.3 Scalability of Model Generation

Setup. This experiment aims at determining whether our
model generation runs in practical time for test case genera-
tion with type scopes. We generated models with increas-
ing size in the SAT, SCT, and MET domains. For
answering RQ2.1, we used scope bounds (þþS) based on
engineering expectations for SAT, and bounds based on
real type distributions for SCT and MET (see the elabora-
tion of RQ4). For answering RQ2.2, type scope bounds
were omitted (S) by definition.

2. We also experimented with the nZ [54] v4.8.5 optimizing SMT
solver. With Real variables (used as an LP solver) it produced results
similar to CBC and CLP, albeit it performed object scope analysis
slightly slower. With Integer variables (used as an IP solver), it pro-
duced out-of-memory errors. Results were omitted for space
considerations.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1621

The hardware environment and measurement protocol
was identical to that of RQ1. We compared the scalability of
the following model generators:

� A: Alloy Analyzer [12] v4.2 is a popular model finder
based of SAT solving (we used the default Sat4J
background solver). We translated the model gener-
ation problem into an Alloy model by known map-
pings [13]. We benchmarked both the Sat4J (A/S4J)
and MiniSat (A/MS) background solvers.

� GS/O: To generate models with type scope bounds
using the original GraphSolver, the bounds were
translated into WF constraints.

� GS/S: Following the findings of RQ1, our graph gen-
erator used LP for object scope analysis.

Results. Figs. 4 and 5 show the execution times of the gen-
erators. The random exploration and backjumping heuris-
tics caused large variance in the execution time, including
frequent (but nondeterministic) timeouts of GS/O for larger
models. To enable the in-depth analysis of these effects, the
figures show boxplots of successful execution times for a
given model size. Thus, the medians for GS/O are lower
than those in Fig. 10, which were computed across all (suc-
cessful or unsuccessful) runs. A red line chart shows the
percentage of unsuccessful (timed out) executions out of the
30 runs for a given model size.

A encountered out of memory errors as the SAT prob-
lems grew too large with the increase of the desired number
of objects in the models. In contrast, GS/O and GS/S were
only limited by the execution timeout as limit (and hence
the number of partial models the could explore) thanks to
the concise representation of the space state by PMs.

It is clear that type scope bounds make the model genera-
tion tasks more challenging. For SAT, GS/O was unable to
generate any model of 100 objects. With scope bounds, time-
outs started to appear from 30 objects, while without
bounds, models with up to 70 elements were generated
without timing out. GS/S could generate models with 100
objects within 108 sec. However, GS/S with scope bounds

exhibited some random slowdowns, where generation took
an exceedingly long time or reached the time limit. These
slowdowns, which were not experienced during model gen-
eration without scope bounds, could possibly be mitigated
by refining the backjumping and restarting strategies.

The interaction of type scope bounds with structural and
WF constraints in SCT made generation of models with real-
istic type distributions difficult. GS/O failed to generate any
model of 40 objects or larger, while GS/S could generate
models with 200 objects within 95 sec.

RA2.1 For model generation problems with type scope
bounds, object scope analysis improves the scalability
model generation. The effect is most visible with up to 7-
fold reduction in execution times when the type scope
bounds interact with structural multiplicity constraints
and WF constraints.

RA2.2 In model generation problems without type
scope bounds, object scope analysis improves the scal-
ability of model generation in domains with complex
structural multiplicity constraints. When no such con-
straints are present, where is no performance improve-
ment, but the overhead incurred by the analysis remains
small.

The removal of type scopes bounds greatly simplifies the
task. Both GS/O and GS/S could produce models with up
to 500 objects. In this domain, type scope analysis in GS/S
yielded a median overhead of 16 s (on a total runtime of
149 s) without reducing the state space (and thus the execu-
tion time) of the generator compared to GS/O for models
with 500 objects.

As MET does not contain any structural multiplicity con-
straints or WF constraints that affect the number of possible
objects in the model,GS/S could only analyze the type scope
bounds themselves. This reduced themedian runtime of suc-
cessfulmodel generation by 18 s and the fraction of timed out
runs by 36 percent. Like SCT, the removal of type scope

Fig. 4. Model generation with type scope bounds. Fig. 5. Model generation without type scope bounds.

1622 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

bounds in MET made the problem easier. GS/O and GS/S
could generate models with up to 2,000 elements with simi-
lar performance (with a median scope analysis overhead of
21 s for models of 2,000 objects).A failed to produce a model
even for the smallest size (200 objects) in this scenario.

As a stress test, we also determined the maximum size of
a model that GS/S can generate within the time limit of 5
minutes. With type scope bounds, these were 155 objects for
SAT, 436 for SCT, and 121 for MET. Without satisfying the
type scope bounds, much larger models are possible: 157
objects for SAT, 649 for SCT, and 2631 forMET.

4.4 Behavior on Unsatisfiable Problems

Setup. The purpose of this experiment is to assess the performance
degradation occurring in our approach in case of unsatisfiable
problems. Due to the lack of existing benchmark sets of
unsatisfiable model generation problems, we introduces
two modifications to the domains from RQ2.

First, we extended each domain with a negated WF con-
straint, obtaining model generation problems with unsatisfi-
able WF constraints (þþ WF). For example, in SATþþ WF, we
added the error pattern ’0

4ðsÞ :¼ :’4ðsÞ, which specifies that
no Spacecraft may have a communication path to the
GroundStation. Combined with the original ’4 that forces
such communication paths for all Spacecraft, the set of WF
constraints f’1; . . . ;’4; . . .’8;’

0
4g have no consistent model.

Error patterns for SCTþþ WF and METþþ WF were defined
analogously.

Second, we also studied the effect of unsatisfiable type scope
constraints (þþ S), i.e., type scope constraints that correspond to
no well-formed models. We changed the required number of
objects such that multiplicity and containment constraints
cannot be satisfied due to type scope bounds, e.g., in SATþþ S,
we required at least 30 percent of the objects be Satellites but
only 25 percent be CommSubsys instances, despite a Satellite
having to contain at least one CommSubsys. We omittedMET

from this benchmark, as it does not have anyMUL constraints
onCON relations.

Although we selected the type fractions to make type
scope bounds unsatisfiable, rounding the fractions to whole
numbers (quantization errors) of objects may cause the
problems to be nevertheless satisfiable for very small instan-
ces. Thus, we had to account for these small satisfiable
instances in our analysis.

Results. Fig. 6 shows the execution times of the generators
on þþ WF problems up to 15 objects.

Even though GS/S are primarily aimed at model genera-
tion, and thus had to explore a large portion of possible partial
models before concluding unsatisfiability, they remained
competitive in SATþþ WF and SCTþþ WF in problems with up to
9 and 11 objects, respectively. Because SAT is unsatisfiable for
less than 10 objects (even without þþ WF), GS/S could termi-
nate without exploring the state space for the first 5 cases. In
SCTþþ WF, althoughGS/S could not outright avoid state space
exploration, it explored 16 times less states thanGS/O thanks
to scope analysis.A, which ismuch better suited for problems
withunsatisfiable constraints,managed to prove unsatisfiabil-
ity within 4 s for all model sizes inSATþþ WF and SCTþþ WF.

MET þþ WF was more difficult for all approaches: while A
could prove unsatisfiability with up to 11 objects (running

out of memory at 12 objects), GS/O andGS/S did not termi-
nate within the time limit even for 5 objects, exploring
19 000 states before timeout.

Figs. 7 and 8 show the execution times of the approaches
on þþ S problems. For small þþ S problems with up to n ¼ 15
objects, both A and GS/S terminated successfully within 5 s
except in the cases of n ¼ 12 and 13 in SATþþ S for GS/S.
Due to the rounding of the type scope fractions into whole
number bounds, these cases did not result in immediate
unsatisfiable systems of linear equations. Therefore, GS/S
had to explore 4,982 and 5,413 states, respectively, before
concluding unsatisfiability. There also was a rounding effect
that made SCTþþ S satisfiable for n ¼ 8. The model was
found by GS/S after exploring 16 states. GS/O ran out of
time after 10 objects, because it had to exhaustively enumer-
ate partial models.

For larger problems with up to 100 objects for SATþþ WF

and up to 200 objects for SCTþþ WF in Fig. 8, the execution

Fig. 6. Model generation with unsatisfiable well-formedness constraints
with problem sizes up to 15 objects.

Fig. 7. Model generation with unsatisfiable type scope bounds with prob-
lem sizes up to 15 objects.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1623

time of GS/S remained constant below 5 s. In contrast, the
execution times of A increased cubically with n.

4.5 Type Distributions of Models

Setup. This experiment aims at comparing test generation
approaches (without and with type scope bounds) where the test
engineer desires to avoid unrealistic test models. To address RQ4,
we calculated the distribution of the fractions of objects of
given types (i.e., the number of objects of a type in the model
divided by themodel size) of human (manually created)mod-
els, and compared them to the type distributions of automati-
cally generated models. The use of type distributions as
means of realistic nature of models was motivated by [18],
[19]. As human models were only available for SCT andMET,
we excludedSAT from this comparison.

� Human: We gathered 304 SCT models with sizes
between 90 and 110 objects that were submitted as
part of a homework assignment [56], where students
solved similar (but not identical) modeling chal-
lenges. For MET, we collected 153 manually created
class diagrams (those generated from XML schema
were excluded) with sizes between 50 and 200 from
open source projects hosted on GitHub.3

� GS/O: For both domains, we generated 30 models of
100 objects (without any type scope bounds) with
the original GraphSolver [32] tool.

� GS/S: We generated models with realistic type dis-
tributions with our graph solver enhanced with type
scope support. To determine the lower and upper
bounds for each type, we computed the lower Q

ð1Þ
i

and upper Q
ð3Þ
i quartiles of the object fractions in the

Human models for each non-abstract class Ci. Then
for the generation of models with n ¼ 100 objects,
we added the type scope bounds

�
Q

ð1Þ
i n

� � Ci ��
Q

ð3Þ
i n

�
.

Results. The distribution of type fractions is shown in
Fig. 9. In SCT, GS/O generated a large number of Exit and
FinalState objects compared to the Human while it almost
entirely omitted Choice, Entry, and Region. The average dis-
crepancy between the type distribution of Human models

in GS/O models is 25 objects per model (25 percent) that
would need a different type to match the Human
distribution.

RA3 For model generation problems with unsatisfiable
well-formedness constraints, object scope analysis can
improve the scalability of search space exploration for
model generators. However, SAT solvers are better
suited to tackle such problems. For model generation
problems with unsatisfiable type scope bounds, object
scope analysis can eliminate the need for exploring the
state space, and the time taken for proving unsatisfiabil-
ity is independent from the (potential) size of the state
space.

In MET, GS/O overused the EAnnotation, EGenericType,
EStringToStringMapEntry, and ETypeParameter classes at
the expense of EAttribute, EClass, and EReference objects.
The average discrepancy was 83 objects per model (with
100 objects). Models generated by GS/S had identical type
distributions, which for EAttribute and EClass coincided
with the upper type scope bound.

Therefore, GS/O failed to generate models matching
the type distributions of Human models. In contrast,
GS/S can be parameterized to satisfy type distribution
requirements, e.g., probabilistic types and histograms [19].
Furthermore, to capture more complex correlation
between distributions of different types, users can
inspect generated models and easily (albeit manually)
refine type scope bounds to exclude results that are not
realistic, using an iterative process based on previously
generated undesired models.

All models generated byGS/O andGS/Swere connected
(i.e., no islands or forest of nodes) and they were structur-
ally different from each other, which is guaranteed by the
underlying state space exploration strategy [32].

RA4 Models generated without type scopes bounds
greatly differ in type distribution compared to human
(manually created) models. The use of type scope
bounds allows generating nontrivial, connected graph
models with designated type distributions.

While type distributions were found to be a useful metric to
characterize the realistic nature of models [8], [18], further
investigations are necessitated along various metrics to
claim that the auto-generated models are truly realistic.

We also confirmed that the internal diversity [20] of the
synthesized models is not impacted negatively by the pro-
posed approach. The relevance of this metric in mutation
testing is shown in [20].

4.6 Limitations and Threats to Validity

Limitations. Our approach shares some of its strengths and
limitations with GraphSolver [32]. Namely, it operates over
connected sparse graphs with edges and relations, i.e., with-
out edge identities or parallel edges (which is suitable to
represent standard EMF models).

The expressive power of the graph predicates capturing
WF constraints is equivalent to first-order logic with

Fig. 8. Model generation with unsatisfiable type scope bounds with prob-
lem sizes up to 100 and 200 objects.

3. We queried the GitHub (https://github.com) API for the 1,000
most recent Ecore models as of July 31st, 2019 and filtered for model
size and the lack of XML schema.

1624 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

https://github.com

transitive closure over binary predicates. While type scope
bounds and object scopes do not bring additional expres-
siveness, so they can be transformed back into WF con-
straints, they considerably improve scalability in various
domains. Object scopes consisting of linear inequalities can
exactly encode type scopes bounds (including the bound on
the overall model size), and they can also encode weakened
versions of structural MUL and CON constraints (including
the XOR between different containment relations of objects),
guiding state space exploration in challenges that often arise
from class diagrams. However, for model generation tasks
without such constraints, it may not be possible to (even
manually) encode useful linear inequalities, and the intro-
duced object scope analysis may pose a slight overhead
over the baseline generator.

The sound and complete set of decision rules allow for-
mal reasoning within the bounded scope defined by type
scope bounds. However, unlike many SAT and SMT solv-
ers, there is currently no support for an unsatisfiable core (a
minimal contradictory set of formulas) that would highlight
the contradiction between WF constraints or type scopes.

The work presented in this paper only considers classes
and references, but not attributes. While the three-valued

logic framework can support basic attributes, placing and
maintaining scope bounds for attribute values would
require additional abstractions, such as [40].

In unsatisfiable problems, proving unsatisfiability with a
model generator may require exponential time to exhaus-
tively traverse the search space if the search cannot be
aborted early with scope analysis. Thus such problems may
be more amenable to SAT solving instead.

The generation of models with realistic type distributions
assumes the availability of real models to determine type
histograms. For ensuring realistic properties other than type
distributions, additional heuristics may be needed.

Internal Validity. Our scalability experiments incorpo-
rated a warm-up phase prior to actual measurements and
garbage collector calls between actual measurements to
reduce variance of execution times due to the JVM (but not
due to the inherent behavior of the model generators). To
further mitigate disturbances from the environment, each
measurement was pinned to a single memory controller
and the associated CPU cores on our server. We used
default configurations for the external IP and LP solvers, as
well as A. Domain-specific fine-tunings may reduce the exe-
cution times of these programs, but in most cases they were
already negligible.

As noted in Section 2.1, A only supports limited type
scopes. TheþþS problems cannot be formalized inAwithout
the use of the # operator, even if lower bound constraints
are omitted. However, as A performance was similar on
both þþS and S problems, our encoding of the bounds
likely did not introduce scalability bottlenecks.

For determining realistic type distributions of the indus-
trial modeling languages, we considered manually con-
structed and automatically generated models of similar size
to minimize discrepancies caused by different scales. For
SAT, the distribution were prescribed manually. The behav-
ior of the model generators did not change drastically upon
changing the prescribed distribution, as long as the arising
type scope bounds remained satisfiable.

External Validity. Our measurements cover 3 domains (1
from a design space exploration challenge published by
NASA researchers, 2 from industrial modeling languages)
both with and without realistic type scope bounds.All domains
had complex structural and WF constraints that interacted in
various ways with the type scope bounds. Consequently,
our experimental scalability results of our graph generator
are likely generalizable to other domains of similar size.

As the performance of object scope analysis based on IP
and LP depends on the selected external solver, we inte-
grated the nZ optimizing SMT solver in addition to the

Fig. 9. Fractions of objects of given types in SCT andMET.

Fig. 10. Comparison of scope analysis methods on the SAT domain.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1625

well-known solvers from the COIN-OR project. In case of
LP problems, performance was comparable to CLP, while
for IP problems, CBC proved to be significantly better.
Therefore, the reported scalability of IP and LP object scope
propagation likely matches what is achievable with state-of-
the-art external solvers.

5 RELATED WORK

Logic Solver Approaches. Several approaches map a model
generation problem into a logic problem, which is solved by
underlying SAT/SMT-solvers. Complete frameworks with
standalone specification languages include Formula [14]
(using the Z3 SMT-solver [24]), Alloy [12] (using SAT-solvers
like Sat4j [22]) and Clafer [57] (using reasoners like Alloy).

There are several approaches aiming to validate stan-
dardized engineering models enriched with OCL con-
straints [58] by relying upon different back-end logic-based
approaches such as constraint logic programming [36], [59],
[60], SAT-based model finders (like Alloy) [7], [16], [35],
[50], [51], [61], [62], [63], CSP solvers [64], first-order logic
[65], constructive query containment [66] or higher-order
logic [67]. Partial snapshots and WF constraints can be uni-
formly represented as constraints [7]. Growing models are
supported in [50], [68] for a limited set of constraints.

Scalability of all these approaches are limited to small
models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs
to be restricted explicitly) or they have decidability issues.
As our approach is independent from the actual mapping
of constraints to logic formulae, it could potentially be inte-
grated with most of the above techniques by complement-
ing or replacing the back-end solvers.

Uncertain Models. Partial models are similar to uncertain
models, which offer a rich specification language [30], [69]
amenable to analysis. They a more user-friendly language
compared to 3-valued interpretations, but without handling
additional WF constraints. Potential concrete models com-
pliant with an uncertain model can be synthesized by the
Alloy Analyzer [31], or refined by graph transformation
rules [70]. Each concrete model is derived in a single step,
thus their approach is not iterative like ours. Scalability
analysis is omitted from these papers, but refinement of
uncertain models is always decidable.

Approaches like [71] analyze possible matches and exe-
cutions of model transformation rules on partial models by
using a SAT solver (MathSAT4) or by automated graph
approximation (referred to as “lifting”), or by graph query
engines with [26]. As a key difference, our approach carries
out model refinement while simultaneously evaluating
graph query evaluation.

Iterative Approaches. Iterative approaches generate models
by multiple solver calls. In [50] models are generated in by
calling Alloy in multiple steps, where each step extends the
instance model by a few elements. This approach scaled up
to 50 object in 45 s for generating valid Yakindu Statecharts.
An iterative approach is proposed specifically for allocation
problems in [72] based on Formula. An iterative, counter-
example guided synthesis is proposed for higher-order
logic formulae in [73], but the size of models is fixed and
smaller than 50 objects.

Symbolic Model Generation Techniques. Certain techniques
use abstract (or symbolic) graphs for analysis purposes. A
tableau-based reasoningmethod is proposed for graph prop-
erties [74], [75], [76], which automatically refines solutions
based on well-formedness constraints, and handles the state
space in the form of a resolution tree. As a key difference, our
approach refines possible solutions in the form of partial
models, while [74], [75] resolves the graph constraints to a
concrete solution. Therefore our approach is able to exploit
efficient graph query engines to evaluate partial solutions,
while those techniques are demonstrated on small (< 10
objects) graphs or with no scalability evaluation.

Different approaches use abstract interpretation [77], or
predicate abstraction [39], [40], [78] for partial modeling. In
those approaches, concretization is used to materialize (typ-
ically small) counter-examples for designated safety proper-
ties in a graph transformation system. However, their focus
is to support model checking of abstract graph transforma-
tion systems, which can evaluate complex trajectories, but
do not scale in the size of the models.

Additionally, counter abstractions by Petri graphs were
used in the verification of graph transformation systems [79]
and as heuristic functions for rule-based design-space
exploration [80]. The Augur framework [41], [42], [81] uses
similar counter abstraction on graph properties for in graph
transformation systems, which can be analyzed as a transi-
tion system. As a key difference, a graph transformation
rule can both increase or decrease amounts in abstract
graphs, while in our approach the constraints are respecting
the refinement relation, thus we can utilize IP and LP solv-
ers instead of model checkers.

Smart bound selection for the number of objects was
used in the satisfiability checking of OCL formulas in [82].

Numerical Abstractions. Verification of programs contain-
ing numerical (integer or real) variables by abstract inter-
pretation relies of numerical abstract domains [83], [84],
including polyhedra defined by systems of linear equa-
tions [85], [86], as a key component to over- and under-
approximate the sets of possible program states. Numerical
abstract domains are combined with graph abstractions in
two main ways to verify heap and pointer based programs.

First, numerical abstract domains may summarize object
attributes (field) in value analysis of heap programs [40],
[87], [88]. Summarized dimensions [78] were introduced to
succinctly represent attributes of a potentially unbounded
set of objects via multi-objects. This approach can be seen as
complementary to ours, as it enables attribute handling in
three-valued partial models, and allows checking for refine-
ments by abstract subsumption [89].

Second, numerical abstract domains can aid reasoning
about the number of objects in a graph (usually a program
heap) by structural counter abstraction [90]. This approach
is closely related to ours, but its use is limited to program
verification. In contrast, we explicitly incorporate uncertain
types and references by three-valued partial modeling to
enable model generation.

Model-based quantifier instantiation approach [91] in
SMT solvers for finite model finding also relies on counter
abstractions. It can be seen as a dual to scoped model gener-
ation: it aims to merge terms to satisfy finiteness constrains
instead of splitting multi-objects to add new objects.

1626 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a new 3-valued scoped partial
modeling formalism which allows to explicitly represent
multiplicity constraints on the size of partial models with a
linear inequality system. Those constraints cover the
requested size of the completed model for each class (type)
and the additional constraints imposed by the metamodel
(e.g., reference multiplicities) and well-formedness con-
straints. The resultant multiplicity constraint can be effi-
ciently solved by an underlying IP or LP solver to get a
more precise view on the number of objects in a potential
concretization of the partial model, or to detect infeasible
numerical requirements on it. Based on the advanced
numerical reasoning on partial models, we extend the graph
solver algorithm of [21], [32] with scoped partial models and
numerical reasoning using IP or LP solvers, which greatly
improves the performance of the solver (and outperforms
related solvers like [13]). Additionally, the proposed tech-
nique enables the efficient use of type scopes, which allows
the generation of more realistic or useful models.

As future work, we plan to extend the model generator
with numerical optimization with respect to a user-defined
cost function (or goal function), thus allowing the genera-
tion of graph models with optimal properties (like smallest
models or cheapest models with respect to a cost-function).

ACKNOWLEDGMENTS

This work was partially supported by BME-Artificial Intelli-
gence FIKP grant of EMMI (BME FIKP-MI/SC), the BME
NC TKP2020 grant of NKFIH Hungary, the ÚNKP-20-4
New National Excellence Program of the Ministry for Inno-
vation and Technology from the source of the National
Research, Development and Innovation Fund, and the
NSERC RGPIN-04573-16 project.

REFERENCES

[1] RTCA, Inc., “DO-330 sofware tool qualification considerations,”
2011. [Online]. Available: https://standards.globalspec.com/std/
1461615/rtca-do-330

[2] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat:
A tool for generating structurally complex test inputs,” in Proc.
29th Int. Conf. Softw. Eng., 2007, pp. 771–774.

[3] S. Khurshid and D. Marinov, “TestEra: Specification-based testing
of Java programs using SAT,” Autom. Softw. Eng., vol. 11, no. 4,
pp. 403–434, 2004.

[4] Z. Micskei, Z. Szatm�ari, J. Ol�ah, and I. Majzik, “A concept for test-
ing robustness and safety of the context-aware behaviour of
autonomous systems,” in Proc. KES Int. Symp. Agent Multi-Agent
Syst.: Technol. Appl., 2012, pp. 504–513.

[5] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algo-
rithms,” in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., 2018,
pp. 1016–1026.

[6] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling and
simulation for automated testing of soft real-time embedded
software,” Softw. Syst. Model., vol. 14, no. 1, pp. 483–524, 2015.

[7] O. Semer�ath, �A. Barta, �A. Horv�ath, Z. Szatm�ari, and D. Varr�o,
“Formal validation of domain-specific languages with derived
features and well-formedness constraints,” Softw. Syst. Model.,
vol. 16, no. 2, pp. 357–392, 2017.

[8] D. Varr�o, O. Semer�ath, G. Sz�arnyas, and �A. Horv�ath, “Towards the
automated generation of consistent, diverse, scalable and realistic
graph models,” in Graph Transformation, Specifications, and Nets – In
Memory ofHartmut Ehrig, Berlin,Germany: Springer, 2018, pp. 285–312.

[9] The Object Management Group, “Object Constraint Language,
v2.4,” 2014. [Online]. Available: https://www.omg.org/spec/
OCL/2.4

[10] D. Varr�o and A. Balogh, “The model transformation language of
the VIATRA2 framework,” Sci. Comput. Program., vol. 68, no. 3,
pp. 214–234, 2007.

[11] Z. Ujhelyi et al., “EMF-IncQuery: An integrated development
environment for live model queries,” Sci. Comput. Program.,
vol. 98, pp. 80–99, 2015.

[12] D. Jackson, “Alloy: A lightweight object modelling notation,”
ACM Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[13] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2007,
pp. 632–647.

[14] E. K. Jackson, T. Levendovszky, andD. Balasubramanian, “Reasoning
about metamodeling with formal specifications and automatic
proofs,” in Proc. Int. Conf. Model Driven Eng. Lang. Syst., 2011,
pp. 653–667.

[15] E. K. Jackson and J. Sztipanovits, “Towards a formal foundation
for domain specific modeling languages,” in Proc. 6th ACM &
IEEE Int. Conf. Embedded Softw., 2006, pp. 53–62.

[16] M. Kuhlmann, L. Hamann, andM. Gogolla, “Extensive validation of
OCLmodels by integrating SAT solving into USE,” in Proc. Int. Conf.
Modelling Techn. Tools Comput. Perform. Eval., 2011, pp. 290–306.

[17] J. Cabot, R. Claris�o, and D. Riera, “On the verification of UML/
OCL class diagrams using constraint programming,” J. Syst.
Softw., vol. 93, pp. 1–23, 2014.

[18] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical model-
driven data generation for system testing,” CoRR, 2019. [Online].
Available: http://arxiv.org/abs/1902.00397

[19] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Synthetic data gen-
eration for statistical testing,” in Proc. 32nd IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2017, pp. 872–882.

[20] O. Semer�ath, R. Farkas, G. Bergmann, and D. Varr�o, “Diversity of
graph models and graph generators in mutation testing,” Int. J.
Softw. Tools Technol. Transfer, vol. 22, pp. 57–78, 2020.

[21] O. Semer�ath, A. A. Babikian, S. Pilarski, and D. Varr�o, “VIATRA
Solver: A framework for the automated generation of consistent
domain-specific models,” in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng.: Companion Proc., 2019, pp. 43–46.

[22] D. Le Berre and A. Parrain, “The SAT4J library, release 2.2,” J. Sat-
isfiability Boolean Model. Comput., vol. 7, pp. 59–64, 2010.

[23] N. E�en and N. S€orensson, “An extensible SAT-solver,” in Proc. Int.
Conf. Theory Appl. Satisfiability Testing, 2003, pp. 502–518.

[24] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
Int. Conf. Tools AlgorithmsConstructionAnal. Syst., 2008, pp. 337–340.

[25] E. K. Jackson, S. Gabor, and J. Sztipanovits, “Diversely enumerat-
ing system-level architectures,” Microsoft Research, Cambridge,
MA, Tech. Rep. MSR-TR-2013–56, 2013.

[26] O. Semer�ath and D. Varr�o, “Graph constraint evaluation over par-
tial models by constraint rewriting,” in Proc. Int. Conf. Theory
Pract. Model Transformations, 2017, pp. 138–154.

[27] M. Al-Refai, W. Cazzola, and S. Ghosh, “A fuzzy logic based
approach for model-based regression test selection,” in Proc. ACM/
IEEE 20th Int. Conf.Model Driven Eng. Lang. Syst., 2017, pp. 55–62.

[28] S. Edunov, D. Logothetis, C. Wang, A. Ching, and M. Kabiljo,
“Generating synthetic social graphs with darwini,” in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 567–577.

[29] D. Honfi and Z. Micskei, “Classifying generated white-box tests:
An exploratory study,” Softw. Qual. J., vol. 27, pp. 1339–1380,
2019.

[30] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards
modeling and reasoning with uncertainty,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 573–583.

[31] R. Salay, M. Famelis, and M. Chechik, “Language independent
refinement using partial modeling,” in Proc. Int. Conf. Fundam.
Approaches Softw. Eng., 2012, pp. 224–239.

[32] O. Semer�ath, A. S. Nagy, and D. Varr�o, “A graph solver for the
automated generation of consistent domain-specific models,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 969–980.

[33] S. J. I. Herzig, S. Mandutianu, H. Kim, S. Hernandez, and
T. Imken, “Model-transformation-based computational design
synthesis for mission architecture optimization,” in Proc. IEEE
Aerosp. Conf., 2017, pp. 1–15.

[34] Eclipse Modeling Framework, The Eclipse Project, 2017. [Online].
Available: http://www.eclipse.org/emf

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1627

https://standards.globalspec.com/std/1461615/rtca-do-330
https://standards.globalspec.com/std/1461615/rtca-do-330
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
http://arxiv.org/abs/1902.00397
http://www.eclipse.org/emf

[35] S. M. A. Shah, K. Anastasakis, and B. Bordbar, “From UML to
Alloy and back again,” in Proc. Int. Conf. Model Driven Eng. Lang.
Syst., 2009, pp. 158–171.

[36] J. Cabot, R. Claris�o, and D. Riera, “UMLtoCSP: A tool for the for-
mal verification of UML/OCL models using constraint pro-
gramming,” in Proc. 22nd IEEE/ACM Int. Conf. Autom. Softw. Eng.,
2007, pp. 547–548.

[37] U. Nickel, J. Niere, and A. Z€undorf, “The FUJABA environment,”
in Proc. Int. Conf. Softw. Eng., 2000, pp. 742–745.

[38] A. Rensink, I. Boneva, H. Kastenberg, and T. S. en, “User manual
for the GROOVE tool set,” 2012. [Online]. Available: https://
groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf

[39] T. W. Reps, M. Sagiv, and R. Wilhelm, “Static program analysis
via 3-valued logic,” in Proc. Int. Conf. Comput. Aided Verification,
2004, pp. 15–30.

[40] P. Ferrara, R. Fuchs, and U. Juhasz, “TVAL+: TVLA and value
analyses together,” in Proc. Int. Conf. Softw. Eng. Formal Methods,
2012, pp. 63–77.

[41] P. Baldan, A. Corradini, and B. K€onig, “A static analysis technique
for graph transformation systems,” in Proc. Int. Conf. Concurrency
Theory, 2001, pp. 381–295.

[42] B. K€onig and V. Kozioura, “Augur 2 – A new version of a tool for
the analysis of graph transformation systems,” Electron. Notes
Theor. Comput. Sci., vol. 211, pp. 201–210, 2008.

[43] D. Varr�o, G. Bergmann, �A. Heged€us, �A. Horv�ath, I. R�ath, and
Z. Ujhelyi, “Road to a reactive and incremental model transforma-
tion platform: Three generations of the VIATRA framework,”
Softw. Syst. Model., vol. 15, no. 3, pp. 609–629, 2016.

[44] G. Sz�arnyas, B. Izs�o, D. Harmath, G. Bergmann, and D. Varr�o,
“IncQuery-D: A distributed incremental model query framework
in the cloud,” in Proc. Int. Conf. Model Driven Eng. Lang. Syst.,
2014, pp. 653–669.

[45] A. Benelallam, A. G�omez, M. Tisi, and J. Cabot, “Distributed
model-to-model transformation with ATL on MapReduce,” in
Proc. ACM SIGPLAN Int. Conf. Softw. Lang. Eng., 2015, pp. 37–48.

[46] H. Abdeen, D. Varr�o, H. Saharoui, A. S. Nagy, �A. Heged€us, and
�A. Horv�ath, “Multi-objective optimization in rule-based design-
space exploration,” in Proc. 29th ACM/IEEE Int. Conf. Autom.
Softw. Eng., 2014, pp. 289–300.

[47] A. Rensink, “Isomorphism checking in GROOVE,” in Proc. 3rd Int.
Workshop Graph Based Tools, 2006, Art. no. 11.

[48] F. Yu, T. Bultan, and E. Peterson, “Automated size analysis for
OCL,” in Proc. 6th Joint Meeting Eur. Softw. Eng. Conf. and the ACM
SIGSOFT Symp. Found. Softw. Eng., 2007, pp. 331–340.

[49] Yakindu Statechart Tools, Yakindu. [Online]. Available: http://
statecharts.org/

[50] O. Semer�ath, A. V€or€os, and D. Varr�o, “Iterative and incremental
model generation by logic solvers,” in Proc. Int. Conf. Fundam.
Approaches Softw. Eng., 2016, pp. 87–103.

[51] F. B€uttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of ATL
transformations using transformation models and model finders,”
in Proc. Int. Conf. Formal Eng. Methods, 2012, pp. 198–213.

[52] H. Wu, “An SMT-based approach for generating coverage ori-
ented metamodel instances,” Int. J. Inf. Syst. Model. Design, vol. 7,
no. 3, pp. 23–50, 2016.

[53] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer,
“Multi-criteria test cases selection for model transformations,”
Autom. Softw. Eng., vol. 27, pp. 91–118, 2020.

[54] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “nZ – an optimizing
SMT solver,” in Proc. Int. Conf. Tools Algorithms Construction Anal.
Syst., 2015, pp. 194–199.

[55] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt,
“Virtual machine warmup blows hot and cold,” Proc. ACM Pro-
gram. Lang., vol. 1, no. OOPSLA, 2012, Art. no. 52.

[56] System Modeling, Budapest Univ. of Technology and Economics,
2020. [Online]. Available: https://portal.vik.bme.hu/kepzes/
targyak/VIMIAA00/en/

[57] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: Unifying class and feature modeling,” Softw. Syst. Model.,
vol. 15, pp. 811–845, 2016.

[58] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and
OCL models in USE by automatic snapshot generation,” Softw.
Syst. Model., vol. 4, pp. 386–398, 2005.

[59] J. Cabot, R. Clariso, and D. Riera, “Verification of UML/OCL class
diagrams using constraint programming,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation Workshop, 2008, pp. 73–80.

[60] F. B€uttner and J. Cabot, “Lightweight string reasoning for OCL,”
in Proc. Eur. Conf. Modelling Found. Appl., 2012, pp. 244–258.

[61] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges
of model transformation from UML to Alloy,” Softw. Syst. Model.,
vol. 9, no. 1, pp. 69–86, 2010.

[62] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using boolean satisfiability,” in Proc.
Des. Autom. Test Europe Conf. Exhib., 2010, pp. 1341–1344.

[63] B. Meng, A. Reynolds, C. Tinelli, and C. Barrett, “Relational con-
straint solving in SMT,” in Proc. Int. Conf. Autom. Deduction, 2017,
pp. 148–165.

[64] C. A. Gonz�alez, F. B€uttner, R. Claris�o, and J. Cabot, “EMFtoCSP: A
tool for the lightweight verification of EMF models,” in Proc. 1st
Int. Workshop Formal Methods Softw. Eng.: Rigorous Agile Approaches,
2012, pp. 44–50.

[65] B. Beckert, U. Keller, and P. H. Schmitt, “Translating the Object
Constraint Language into First-order Predicate Logic,” in Proc.
VERIFY, Workshop Federated Logic Conf., 2002, pp. 113–123.

[66] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas,” Data Knowl.
Eng., vol. 73, pp. 1–22, 2012.

[67] H. Gr€onniger, J. O. Ringert, and B. Rumpe, “System model-based
definition of modeling language semantics,” in Proc. Int. Conf. For-
mal Techn. Distrib. Syst., 2009, pp. 152–166.

[68] E. K. Jackson and J. Sztipanovits, “Constructive techniques for
meta-and model-level reasoning,” in Proc. Int. Conf. Model Driven
Eng. Lang. Syst., 2007, pp. 405–419.

[69] R. Salay and M. Chechik, “A generalized formal framework for
partial modeling,” in Proc. Int. Conf. Fundam. Approaches Softw.
Eng., 2015, pp. 133–148.

[70] R. Salay, M. Chechik, M. Famelis, and J. Gorzny, “A methodology
for verifying refinements of partial models,” J. Object Technol.,
vol. 14, no. 3, pp. 3:1–31, 2015.

[71] M. Famelis, R. Salay, A. Di Sandro, andM. Chechik, “Transformation
of models containing uncertainty,” in Proc. Int. Conf. Model Driven
Eng. Lang. Syst., 2013, pp. 673–689.

[72] E. Kang, E. Jackson, and W. Schulte, “An approach for effective
design space exploration,” in Proc. Monterey Workshop, 2010,
pp. 33–54.

[73] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A gen-
eral-purpose higher-order relational constraint solver,” in Proc.
IEEE/ACM 37th Int. Conf. Softw. Eng., 2015, pp. 609–619.

[74] S. Schneider, L. Lambers, and F. Orejas, “Symbolic model genera-
tion for graph properties,” in Proc. Int. Conf. Fundam. Approaches
Softw. Eng., 2017, pp. 226–243.

[75] K.-H. Pennemann, “Resolution-like theorem proving for high-
level conditions,” in Proc. Int. Conf. Graph Transformation, 2008,
pp. 289–304.

[76] A. S. Al-Sibahi, A. S. Dimovski, and A. Wasowski, “Symbolic exe-
cution of high-level transformations,” in Proc. ACM SIGPLAN Int.
Conf. Softw. Lang. Eng., 2016, pp. 207–220.

[77] A. Rensink and D. Distefano, “Abstract graph transformation,”
Electron. Notes Theor. Comput. Sci., vol. 157, no. 1, pp. 39–59,
2006.

[78] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv, “Numeric
domains with summarized dimensions,” in Proc. Int. Conf. Tools
Algorithms Construction Anal. Syst., 2004, pp. 512–529.

[79] D. Varr�o, S. Varr�o-Gyapay, H. Ehrig, U. Prange, and G. Taentzer,
“Termination analysis of model transformations by Petri nets,” in
Proc. Int. Conf. Graph Transformation, 2006, pp. 260–274.

[80] �A. Heged€us, �A. Horv�ath, and D. Varr�o, “A model-driven frame-
work for guided design space exploration,” Autom. Softw. Eng.,
vol. 22, no. 3, pp. 399–436, 2015.

[81] B. K€onig and V. Kozioura, “Counterexample-guided abstraction
refinement for the analysis of graph transformation systems,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2006,
pp. 197–211.

[82] R. Claris�o, C. A. Gonz�alez, and J. Cabot, “Smart bound selection
for the verification of UML/OCL class diagrams,” IEEE Trans.
Softw. Eng., vol. 45, no. 4, pp. 412–426, Apr. 2019.

[83] A. Min�e, “Weakly relational numerical abstract domains,” Ph.D.
dissertation, 2004. [Online]. Available: https://www-apr.lip6.fr/
mine/these/these-color.pdf

[84] G. Singh, M. P€uschel, and M. Vechev, “A practical construction
for decomposing numerical abstract domains,” Proc. ACM Pro-
gram. Lang., vol. 2, no. POPL, 2018, Art. no. 2.

1628 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

https://groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf
https://groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf
http://statecharts.org/
http://statecharts.org/
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/
https://www-apr.lip6.fr/<mine/these/these-color.pdf
https://www-apr.lip6.fr/<mine/these/these-color.pdf

[85] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in Proc. 5th ACM
SIGACT-SIGPLAN Symp. Princ. Program. Lang., 1978, pp. 84–96.

[86] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems,” Sci.
Comput. Program., vol. 72, no. 1/2, pp. 3–21, 2008.

[87] S. Magill, J. Berdine, E. Clarke, and B. Cook, “Arithmetic strength-
ening for shape analysis,” in Proc. 14th Int. Conf. Static Anal., 2007,
pp. 419–436.

[88] B. McCloskey, T. Reps, andM. Sagiv, “Statically inferring complex
heap, array, and numeric invariants,” in Proc. Int. Static Anal.
Symp., 2010, pp. 71–99.

[89] S. Anand, C. S. P�as�areanu, and W. Visser, “Symbolic execution
with abstraction,” Int. J. Softw. Tools Technol. Transfer, vol. 11,
no. 1, pp. 53–67, 2009.

[90] K. Bansal, E. Koskinen, T. Wies, and D. Zufferey, “Structural
counter abstraction,” in Proc. Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2013, pp. 62–77.

[91] A. Reynolds, C. Tinelli, A. Doel, and S. Kristi�c, “Finite model find-
ing in SMT,” in Proc. Int. Conf. Comput. Aided Verification, 2013,
pp. 640–655.

Krist�of Marussy is currently working toward the
PhD degree in the Department of Measurement
and Information Systems, Budapest University of
Technology and Economics, Hungary. He is also
a research assistant at the MTA Lend€ulet Cyber-
Physical Systems Research Group. His research
interest include the modeling and analysis of
extra-functional properties of cyber-physical sys-
tems, and the synthesis of reliable architectures.

Oszk�ar Semer�ath is a research fellow at the
Budapest University of Technology and Economics,
Hungary and MTA Lend€ulet Cyber-Physical Sys-
tems Research Group. His research focuses on
modeling tools and graph generation, he is themain
developer of the VIATRA Solver graph generator
framework. His results were published in a book
chapter, three journal papers with impact factor, in
12 conference papers, and won IEEE/ACM Best
Paper Award at theMODELS 2013 conference.

D�aniel Varr�o is a full professor of software engi-
neering at McGill University, Canada and at the
Budapest University of TechnologyandEconomics,
Hungary. He is also a research chair of the MTA
Lend€ulet Cyber-Physical Systems Research
Group. He is a co-author ofmore than 150 scientific
paperswith seven distinguished paper awards, and
two most influential paper awards. He regularly
serves on the program committee of various inter-
national conferences in the field and serves on the
editorial board of theSoftware andSystemsModel-

ing Journal (Springer) and the Journal of Object Technology. He was a pro-
gram committee co-chair of FASE 2013, ICMT 2014 and SLE 2016
conferences. He delivered a keynote talk at the IEEE CSMR 2012 and the
SOFSEM 2016 conferences and at various international workshops and at
the DSM-TP international summer school. He is a co-founder of the VIA-
TRA model query and transformation framework, and IncQuery Labs Ltd.,
a technology-intensive Hungarian company.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

MARUSSY ETAL.: AUTOMATED GENERATION OF CONSISTENTGRAPH MODELSWITH MULTIPLICITY REASONING 1629

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

