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1 Introduction

Cyber-physical systems (CPS) are smart systems that include highly interconnected
digital, analog, physical, and human components. They provide new functionalities
that improve quality of life and enable technological advances in critical areas, such
as personalized healthcare, traffic flow management, smart manufacturing, energy
supply, autonomous vehicles, and intelligent buildings [NIST17].

The pervasive interconnectedness of computational and physical aspects, as well
as the often critical roles these systems are employed lead to specific characteristics
of CPS that go beyond traditional system and application design:

• CPS may be deployed in a wide variety of configurations and on heterogeneous
computing and communication platforms and are often composed with other
systems as part of a System of Systems. Engineering such systems needs
a methodology to ensure the interoperability of components, manage the
evolution of the requirements and the design, and deal with any harmful
phenomena emerging from the complex interactions.

• The potential impact of CPS on the physical world, up to the possibility
of massive economic damage or even the loss of life, places a heightened
demand for trustworthy systems. These concerns result in the need for
rigorously proven security, privacy, safety, reliability, and resilience. The
systems may rely on runtime adaptation techniques to ensure that their
dependability objectives are met in the face of changes in the operating
environment and failure processes of the hardware [Epi+09; FB16; IW17].

• The interactions between CPS and their operating environment are often
time sensitive. There may be hard real-time requirements placed on certain
functions. For example, we must ensure that the latency between sensing
and actuation remains limited for correct control loops behavior.

Therefore, CPS have to satisfy stringent extra-functional requirements, such as
maintainability, reusability, extensibility, cost, security, privacy, safety, dependabil-
ity, scalability, and performance, in addition to their functional requirements [Fel03].
Model-driven engineering has been widely applied as a methodology to facilitate
CPS design in accordance with these goals, especially in the context of changing
and evolving requirements and architectures [Vog+15].

1.1 Architecture-based analysis of extra-functional requirements
A large fraction of the extra-functional requirements is quantitative, i.e., they can
be evaluated in a mathematically precise way by computing some metric on either
the CPS design artifacts or an auxiliary analysis model. For complex metrics, the
architecture models (e.g., block diagrams) of the CPS are usually not sufficient,
and we have to adopt specific mathematical formalisms for constructing analysis
models. Among these, stochastic models, such as fault trees [Xia+11; Gha+17;
Get+18][c17], Markov chains [KB09], queuing networks [KR08], and Generalized
Stochastic Petri Nets (GSPN) [BMM99; BDD04; LMC04; Ndi+16; CET18][c7; c12],
serve as analysis models for reliability, availability, and performance metrics.
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Manual creation of analysis models requires specialized expertise and meticu-
lous work for each architectural alternative to be analyzed. For complex design
spaces, a large (or possibly even infinite) amount of candidate architectures must
be analyzed [CA05; KR11; GTC15]. Such large-scale manual analyses are infeasible.
To alleviate this problem, architecture based analysis techniques, e.g., [BMM99;
BDD04; FD16; KR08; Gha+17], have been developed, which rely on model transfor-
mations to automatically construct analysis models from the architectural design
artifacts. However, these techniques can only handle static architecture models:
the possible runtime changes have to be fully described in the analysis model, e.g.,
as failure processes and other random processes in the case of stochastic modeling.

To enable runtime monitoring and adaptation, the models@run.time para-
digm [BBF09; Che+11; Búr+20] facilitates the capture of runtime knowledge about
the system and its environment as a continuously maintained model. Although
this allows applying model-driven engineering techniques to create adaptation and
reconfiguration strategies, the mathematically precise extra-functional analysis
of such strategies raises a need for evaluating the extra-functional properties of
dynamic (changing) architecture models [Cal+12].

The first research objective investigated in this thesis aims to address this issue
by extending the architecture-based approach to the runtime adaptation strategies.

Research objective 1 Quantitative extra-functional analysis of dynamic sys-
tem architectures

1.2 Automated generation of design candidates

The large number of possible system configurations each with highly varying extra-
functional characteristics poses a major challenge to find the most suitable system
architecture in an early design phase [NIST17]. Engineers can manually inspect
only a handful subset of candidate architectures. Therefore, various automated
design space exploration (DSE) tools have been developed for system architecture
synthesis to assist in finding viable candidate architectures that satisfy all functional
and extra-functional constraints while optimizing for a target objective. DSE tools
tackling this challenge are broadly classified into two categories:

(Meta-)heuristic techniques, such as genetic algorithms or multi-objective opti-
mization [Mar+10; Abd+14; GTC15; BZS18; Arc+18; FTW16], can support a wide
variety of analyses directly inside the DSE process to derive near-optimal design
candidates. However, they do not guarantee a complete (exhaustive) enumeration
of the design space and the optimality of the generated candidates [Ker+13]. There-
fore, engineers are not informed about the cause of failure (e.g., an unsatisfiable
core) if the exploration fails to produce the desired candidates. Moreover, encoding
hard constraints (which must be satisfied at all times) either requires approxima-
tions by custom soft constraints (which can be violated, but violating solutions are
penalized), objective functions and mutation operators, or it could significantly
degrade the performance or scalability of the exploration [SNP13; BZJ21].

Logic solver based DSE techniques (e.g., [Jac02; KJS10]) have guaranteed sound-
ness and completeness. They usually allow encoding complex logical hard con-
straints and logical formulas or model queries [CCR07; KHG11; Ujh+15; SNV18]

3



Kristóf Marussy 1. Introduction

and may provide an explanation when the synthesis task is unsatisfiable. However,
purely logical constraints cannot capture most extra-functional requirements that
rely on an external numerical solver to analyze. Thus, solvers have to be specifically
extended for optimization tasks, such as in [Li+14; BPF15] to handle both logical
and numerical constraints. Unfortunately, for complex extra-functional analysis
tasks, such optimizing solvers are often unavailable.

Recently, logic-solver based graph model generation has been suggested, which
takes advantage of partial modelling [RSW04; RD06] to explicitly represent design
decisions yet to be made in the internal representation of the solver as a graph
model [SV17; SNV18]. This represents a potential for applying architecture-based
extra-functional analysis directly in the logic solvers to generate design candidates
with completeness guarantees while keeping expressiveness similar to that of
(meta)heuristic techniques.

The second research objective in this thesis focuses on this issue:

Research objective 2 Synthesis of candidate system architectures with com-
pleteness guarantees according to quantitative extra-functional requirements
and objective functions

1.3 Representing uncertainty and variability

Both Research objective 1 and Research objective 2 require a representation
of CPS architectures to analyze and synthesize. Architecture modeling languages,
such as SysML, Palladio [Mar+10], Æmilia [Arc+18], and domain specific languages
rely on graph models to represent system architectures, configurations, and deploy-
ments on heterogeneous computing and communication infrastructures [Vog+15].
In this setting, graph transformations can express reconfigurations as endogenous
(in-place) transformations of the architecture models, while exogenous transforma-
tions can automatically derive analysis models as target models from the source
architecture models [Koz10].

However, both Research objective 1 and Research objective 2 pose chal-
lenges not yet tackled by existing graph model representations.

1.3.1 Representations for view transformations

In Research objective 1, (endogenous) transformations for applying reconfigura-
tion occur at the same time as (exogenous) view transformations for maintaining
analysis models. It is possible to execute the view transformation from scratch
after each reconfiguration, but this can have significant performance costs, and
leads to the loss of valuable traceability information that connects the prior and
current versions of the analysis model. Therefore, an ideal view transformation
engine [Ber+12; CET18] is reactive (i.e. reacts to source model changes), target
incremental (i.e., updates only affected target elements), consistent (i.e., continu-
ously maintains a transformation relation between source and target models) and
validating (i.e., the target model is a valid instance of the target language).

A validating engine that satisfies all well-formedness constraints of the tar-
get language is at odds with reactive and incremental execution: depending on
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the changes to the architecture model, it may be the case that no valid target
model exists at some time [c7]. By semantically preserving inconsistencies in an
inconsistency-tolerant knowledge base, a large fragment of the source and view
models can be kept sync in case of such model editing operations. This allows
preserving traceability links and provides hippocratic behavior (i.e. avoids the
unnecessary deletion and recreation of elements).

Moreover, the development of the analysis model transformation usually re-
quires the collaboration of experts from multiple domains (e.g., embedded systems,
communications infrastructure, hardware reliability). Integrating their results re-
quires combining partial information obtained by model transformations created
according to multiple viewpoints to construct the complete analysis model [CNS12].

1.3.2 Representations for design-space exploration

Regarding Research objective 2, the need for partial and inconsistency-tolerant
representations of CPS architectures is even more explicit.

By introducing a fixed number of explicit points of variability into a system
model, such as the number of redundant component instances and the possi-
ble allocations of functions, a genotype vector for systems models can be con-
structed [Mar+10]. This enables the use of efficient meta-heuristic algorithms
either on the level of architecture models [Ale+09; Mar+10; Li+11; BFK19] or
directly on the level of analysis models [GTC15].

While the aforementioned approaches offer scalability due to the fixed-length,
domain-specific genotype encoding, such encodings are not directly applicable for
problems with a variable number of objects and connections, such as communication
network topologies. To this end, logic solver based approaches for model synthe-
sis [SV17; SNV18] rely on partial graph models to encode design decisions yet to
be made as unknown aspects of the design candidate being worked on.

Conversely, representing inconsistencies that arise during the execution of
decision procedures can pinpoint contradictions in the requirements.

Because existing approaches with partial graph models have limited support for
evaluating extra-functional metrics [FFJ12], there is a need for extending partial
graph model formalisms with such support for the quantitative extra-functional
analysis of CPS architectures. The contributions presented in the thesis in connec-
tion with Research objective 2 aim to provide reasoning capabilities over these
extended partial model representations.

In summary, the following research objective arises as the common theoretical
background for Research objective 1 and Research objective 2:

Research objective 3 Represent uncertainty caused by design decisions yet
to be made, run-time reconfigurations, as well as inconsistencies in complex
system architectures explicitly

2 Background and challenges

In this section, we overview the state-of-the-art results connected to our research
objectives and identify five challenges to be addressed later in this thesis.
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2.1 State space explosion

As we discussed in Section 1.2, the large number of possible hardware architectures,
software component allocations, and configurations poses a significant difficulty
in the verification and synthesis of design candidates. Even if we consider only a
single node (component) type and a single edge (link) type, there are 210×10 ≈ 1030

possible graph models with 10 nodes. Real system design artifacts (e.g., SysML,
Palladio, or domain-specific models) have both more node and edge types, as well
as more components. Thus, the design space formed by possible graphs models
can be much larger, or potentially infinite when we consider node attributes with
continuous range (e.g., probabilities and failure rates).

Approaches based on (meta-)heuristics aim to tackle this problem by only ex-
ploring a fraction of the design space. The heuristics, such as genetic algorithms,
are used to sample parts of the design space in an adaptive manner that are most
likely to contain optimal solutions of the design challenge. In this case, the explo-
rations task consists of various hard and soft constraints on the design candidates
and one or more objectives (usually corresponding to extra-functional metrics) to
be optimized. As a benefit, a wide variety of constraints and objectives can be
supported, even in a multi-objective setting where Pareto-optimal [REJ09] solutions
according to multiple objectives are sought.

2.1.1 Genotype-based approaches

By translating the design candidates into a specialized parametric exploration
representation, such as a finite-dimensional vector, approaches like ArcheOpte-
ryx [Ale+09], AQOSA [Li+11], PerOpteryx [Mar+10], EvoChecker [GTC15], and
Rodes [Cal+17] can execute genetic algorithms on design candidates with a high
probability of convergence to near-optimal solutions. For example, a fixed number
of parameters might be introduced for the allocations of software components to
the hardware platform and for the available component variants. However, in many
graph-like problems, were the number of components and their interconnections
are also variable, it is either impossible to introduce such a finite parametrization,
or the required number of parameters (e.g., at least =2 parameters for links in a
graph with = nodes) grows infeasibly large.

2.1.2 Graph-based approaches

In contrast, graph-based techniques use graph transformations [Agr+02] or refactor-
ings to generate candidate designs as graphmodels. They either rely onmodel-based
search, where a graph model is being mutated, or rule-based search, where so-
lutions are encoded as a sequence of graph transformation operations [Joh+19].
MOMoT [FTW16] and MDEOptimiser [BZS18] rely on the Henshin model trans-
formation language [Are+10] for model-based exploration. Hard constraints pose
a challenge for such approaches: they are either handled by relaxation into soft
constraints or by encoding them in the transformation rules [BZJ21].

Viatra-DSE [Abd+14; HHV15] is a rule-based DSE tool that relies on the
Viatra [Ujh+15] language. SHEPhERd [CMP15] and EASIER [Arc+18] aim to
derive sequences of software architecture refactorings according to extra-functional
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criteria. Synthesizing long chains of model transformations might be challenging
in the presence of hard constraints; e.g., the effectiveness of evolutionary crossover
operators is diminished compared to mutation operators [Abd+14].

Challenge 1 How to represent design candidates and perform search and
analysis in the extremely large design and configuration spaces arising from
complex CPS?

2.2 Functional and structural constraints

In model-driven engineering, general-purpose or domain-specific systems modeling
languages (e.g., UML, SysML, Palladio [BKR08]) are used to represent system archi-
tectures. Such languages are defined by (1) a metamodel to capture the vocabulary
of language with classes and references, while (2) consistent (valid) systems models
also have to satisfy well-formedness (WF) constraints.

We will assume that first-order logic (FOL) can uniformly formalize (a) the con-
straints associated with the systems modeling language, (b) additional design rules,
and (c) functional requirements. For example, if the system modeling language can
describe the physical and functional system architecture and their allocations, FOL
constraints can capture whether all functions are allocated to physical components
in a valid manner. Thus, as a theoretical basis, we may use FOL signatures and
logic formulas to capture metamodels and WF constraints, respectively.

Structural constraints, including type hierarchy, type compliance, multiplicity
constraints, inverse relations, and the containment hierarchy are often imposed
by model management frameworks to ensure that the model artifact remains
serializable [Ste+09]. Several highly expressive languages exist for the specification
of well-formedness constraints, e.g., OCL [OCL] and Viatra [Ber+11].

As such, generating valid models requires solving a logical program with the
satisfaction of user-provided FOL formulas as hard constraints, which is highly chal-
lenging even in the absence of extra-functional metrics [CCR07; KHG11; Var+18].
Typically, only a small fraction of the possible model candidates will satisfy the
complex logical hard constraints.

FOL hard constraints often pose a challenge in (meta-)heuristic DSE approaches.
Burdusel et al. [BZJ21] proposed the automated generation of transformation
rules that preserve a limited class of WF constraints (multiplicity constraints).
PLEDGE [SSB20] combines evolutionary search with logic solving to preserve WF
constraints over object attributes. Other, more complex FOL constraints cannot be
encoded and have to be relaxed into soft constraints.

Logic solver based techniques for FOL problems include constraint program-
ming, such as in UMLtoCSP [CCR07] and DesertFD [ENS10], SAT solving, such as
in Alloy [Jac02] and CoBaSA [MVS07], and Satisfiability Modulo Theories (SMT),
such as in FORMULA [KJS10].

SAT and SMT solvers commonly rely on the Davis-Putnam-Logemann-Love-
land (DPLL) [DLL62; Kat+16] and the abstract DPLL [NOT06; Bra+13] algorithms
for an efficient, complete enumeration of the design space. However, scalability of
logic solvers may be limited in the case of graph-like synthesis problems [SNV18].

Recently, partial modeling [RSW04; Ren06] based graph generation was pro-
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posed [SNV18] as an implementation of a DPLL decision procedure for graph
models, which improves performance over SAT solver for graph model generation.
Nevertheless, integrating partial modeling based DPLL with other background
theories for SMT solving, e.g., for attribute constraints, remains challenging.

Challenge 2 How to ensure that functional and structural constraints are
satisfied in architecture and analysis models?

2.3 Dependability analysis models for reconfigurable systems

Specifying and analyzing extra-functional metrics and requirements in an archi-
tecture-based manner may pose significant challenges in complex, adaptive and
reconfigurable systems. Not only an analysis model has to be constructed from the
system architecture automatically, but the analysis itself must also remain tractable.

Methods for the construction of stochastic analysis models are widespread in
the evaluation of dependability (including reliability and availability), and per-
formance metrics based on architecture models, especially for component-based
design [Koz10; BMP12]. Underlying analysis formalisms include fault trees [JVB17;
Xia+11; Gha+17; Get+18], Markov chains [KB09], queuing networks [KR08], and
Generalized Stochastic Petri Nets (GSPN) [MPB02; BDD04; MB15; Ndi+16; CET20].

The dependability attributes and failure processes may be described in two
ways: (a) They may be represented directly in the architecture model using, e.g.,
UML stereotypes [MPB02], MARTE annotations [Iqb+15] or the AADL Error An-
nex [JVB17; Ale+09]. Alternatively, (b) the transformation definition itself may
encode the dependability attributes of the components (as analysis model frag-
ments). To retain flexibility in the transformation definition and aggregate knowl-
edge for multiple domain experts, transformation definitions may be composed
sequentially [Anj+14; Heg+16] or in parallel [CNS12; DXC11], where the various
elementary transformations to be composed describe the dependability attributes
of different parts of the system.

The analysis of adaptive systems poses further challenges. If the adaptations are
dynamically synthesized in response to failures and events from the environment,
quantiative verificationmust be employed at runtime [Cal+12] to verify the proposed
adaptations. If the system uses a static adaptation strategy, an analysis model that
includes the behaviors of all possible configurations of the system along with the
strategy may grow so large that it makes the analysis intractable.

To alleviate this issue, Phased-Mission System (PMS) [MB99] models were devel-
oped, where phases, which are stochastic models (e.g., fault trees, Markov chains,
GSPNs) describing the behaviors of system configurations, are connected by a
high-level model describing the adaptation strategy. Numerical [SRA92; MB99] or
combinatorial [Xin07; WT07] analysis methods can process phases one-by-one,
connecting the individual models later according to the high-level model. There-
fore, this formulation reduces both the memory and computation demands of
extra-functional analysis.

However, to our best knowledge, while analysis models for individual phases can
be constructed from architecture models by model transformations, no approach
supports simultaneously deriving all phases and the high-level model for the PMS

8



Kristóf Marussy 2. Background and challenges

analysis of an adaptation strategy.

Challenge 3 How to compactly specify and analyze dependability measures
for families of reconfigurable architecture model candidates?

2.4 Witness models for Worst-Case Execution Time Analysis

In embedded systems, runtime monitoring programs are integral components of
the system that analyze events and execution traces [Bar+18] in order to detect
potentially critical situations that violate a requirement. Task schedulability and
real-time requirements demand the use of runtime monitors that adhere to Worst-
Case Execution Time (WCET) constraints [Pik+10; HR02].

According to the models@run.time [BBF09; Che+11] paradigm, runtime moni-
tors are continuously executed on runtime snapshots, i.e., models describing the
runtime state of the system. The heavily data-driven execution of such runtime
monitors compared to the low expressiveness of traditional runtime monitoring solu-
tions [Hav15] makes producing analysis models for safe and tightWCET estimation
challenging [Búr+18; Har+19; DBB18]. This necessitates the use of semantic-aware
WCET estimation [Mai+17] to consider limitations on input data (i.e., constraints
restricting the possible runtime snapshots).

The Implicit Path Enumeration Technique (IPET) [LM97] constructs Integer Linear
Programs (ILP) as WCET analysis models according to the Control Flow Graph (CFG)
on the runtime monitor programs. The IPET ILP can accurately represent the
microarchitectural timing characteristics of the target execution platform along with
the control flow of the program.

The effectiveness of WCET analysis relies on precise program flow facts (e.g.,
loop bounds, infeasible paths). Although there are several algorithms to derive
additional constraints on the program flow [Gus+06; Erm+07; CJ11; KKZ13; Lis14],
there is still a significant manual effort needed to specify flow facts [Abe+15] to
represent domain-specific semantic information about program inputs.

We identified three domain-specific analysis scenarios for runtime monitors:
(i) WCET based on a single runtime snapshot, (ii) WCET based on the metamodel
and well-formedness constraints of the runtime snapshots, and (iii) WCET based on
a partial runtime snapshot. The latter enables reasoning when some information
is fixed at design time (e.g., a railway network) while the rest of the model changes
at runtime (e.g., the positions of trains).

Classical WCET analysis methods (without domain-specific analysis) can handle
scenario (i) by data flow analysis. However, they require over-approximations
based on loops bounds for scenario (ii), because they cannot take well-formedness
constraints of runtime models into account. They fail to address scenario (iii),
because data flow analysis cannot process partial data that without a pre-allocated
memory layout.

In [Búr21][j5], Búr proposed witness models to tackle scenarios (ii) and (iii). The
witness model is a concrete runtime snapshot that maximizes the estimated upper
bound of the execution time of the runtime monitor. Thus, it provides a safe and
tight estimate of the WCET. However, synthesizing the witness model based on
the domain constraints remains challenging.
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Challenge 4 How to synthesize witness models for domain-specific Worst-
Case Execution Time evaluation?

2.5 Numerical reasoning with extra-functional attributes

The analysis of quantiative extra-functional properties requires numerical (quan-
titative) reasoning for evaluating numerical constraints over the attributes of the
architecture models, as well as computing extra-functional metrics during synthesis.

In the case of (meta-)heurisic synthesis approaches, a concrete candidate ar-
chitecture is available at all times during synthesis. Thus, analysis models can be
constructed by model transformations and analyzed using analysis tools, such as
in [Ale+09; Mar+10; Li+11; FTW16; BZS18].

In logic solvers, the supported metrics and objectives is limited by the input
language and the supported background theories [Kat+16]. For supported theories,
optimizing SMT solvers provide capabilities for finding globally optimal solu-
tions [Li+14; BPF15]. The Nelson–Oppen procedure [NO79] is widely employed as
means of combining background theories.

However, the scalability of traditional logic solvers may be limited in the case
of graph-like synthesis problems [SNV18]. Tableau-based reasoning for graphs has
been proposed in [Pen08; SLO17; ADW16], but these approaches lack the support
for reasoning with extra-functional properties.

In abstract interpretation, abstract domains [CH78; SPV18] are used to reason
about the (numerical) values of program variables and expressions. Relational
abstract domains, such as polyhedron abstraction [CH78; BHZ08] can represent
arbitrary numerical relationships between arbitrary program variables. Reasoning
techniques for polyhedra include Linear Programming (LP) and Integer Program-
ming (IP) solvers [Clp; Cbc], as well as specialized representations [Nin15].

In contrast, non-relational domains, such as interval abstraction reduce expres-
siveness by restricting each representable numerical constraint to only refer to a
single variable, but offer more efficient reasoning e.g., by interval arithmetic [Kul09]
and propagators [Nin15].

Even though partial modeling [RSW04; Ren06] based graph generation has been
recently proposed [SNV18] as an implementation of a DPLL [Kat+16] decision
procedure for graph models, the support for numerical reasoning remained lacking.
There are two sources of quantitative values in a graph model: (i) objects of the
model may be equipped with numerical attributes (e.g., elementary performance
or dependability metrics), and (ii) the size or cost measures may depend on the
number of objects.

For (i), the combination of abstract domains and partial models [Mag+07; MRS10;
FFJ12] was proposed, especially for the value analysis of heap and pointer-based
programs [APV09], where partial models represent possible program states. For (ii),
the most closely related works are structural counter abstraction [Ban+13] for graph
transformation systems and model-based quantifier instantiation [Rey+13] in SMT
solvers. Representing models with numerical attributes where the model size (and
thus the number of attribute values to be represented) is not known in advance
has been tackled by summarized dimensions [Gop+04].

However, the aforementioned techniques do not in themselves provide a sound
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Table 1: Research objectives and challenges

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5

Research objective 1 #   # #
Research objective 2   #   
Research objective 3 # #  #  

and complete decision procedure for graph generation, and their use remains
limited to program verification.

Partial modeling allows a sound and complete decision procedure for graph
generation and synthesis by computing under- and over-approximations of the
constraints to be satisfied [SV17] following the abstract DPLL [NOT06; Bra+13]
framework. However, its use is currently limited to logical (FOL) well-formedness
constraints. Thus, the use of numerical abstractions over (i) model attributes and
(ii) model size, as well as the combination of various reasoning techniques in the
context of graph models remains challenging.

Challenge 5 How to reason about the quantitative extra-functional aspects
of complete or incomplete system architectures automatically and efficiently?

The relationships between our research objectives and the aforementioned
challenges are summarized in Table 1.

3 Research method

My research method has been aligned with the best practices of software engineer-
ing research. Research objectives 1–3 were motivated by generalizing industrial
problems and case studies. The feasibility and applicability of the contributions
were demonstrated by open source prototype implementations, while their scala-
bility was evaluated by synthetic and real-world performance benchmarks. The
prototypes are integrated with industrial and academic tools, such as EMF [Ste+09],
Viatra Query [Ujh+15], Viatra Generator [SNV18], and PetriDotNet [j6].

In particular, the following benchmarks and case studies were used to motivate
and evaluate the contributions:

The Interferometry Mission Architecture Optimization [Her+17] case
study was adapted from the NASA Jet Propulsion Laboratory. It aims at deriving
design candidates for interferometry missions with multiple satellites (including
CubeSats and small satellites) communicating over radio links with each other and
a ground station using an optimization approach based on model transformations.

The Train Benchmark [Szá+17] is an open source framework for measuring
the performance of continuous model transformations, with a particular emphasis
on the performance of incremental query reevaluation. It has been actively used
within the model-driven engineering community as a cross-technology perfor-
mance benchmark. It uses a domain-specific model of a railway system originating
from the MOGENTES EU FP7 [MOG] project.
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 Obj. 3 Represent uncertainty, points of variability, run-time  
recon�igurations, and inconsistencies in complex architectures

Contribution group 1 
Partial modeling 

 Obj. 2 Synthesis of candidate 
 system architectures with 

completeness guarantees w.r.t. 
 extra-functional objectives 

 Obj. 1 Architecture-based 
 extra-functional analysis of 
 complex, recon�igurable  

  systems 

Contribution group 2
Reasoning 
with partial models

Contribution group 3 
Model-based analysis 

1.1. 4-valued partial models
 with interval abstraction  

Addresses Ch. 3 and 5

1.2. Scoped partial models
 with polyhedron abstraction  

Addresses Ch. 5

2.2. Model generation with
 multiplicity constraints  
Addresses Ch. 1, 2, and 5

3.1. Architecture-based
 phased-mission analysis  

Addresses Ch. 3

3.2. Witness model synthesis
 for WCET analysis  

Addresses Ch. 4

2.1. Inconsistency-tolerant
 view transformations  
Addresses Ch. 2 and 3

Figure 1: Overview of research objectives and contributions

The Model-Based Demonstrator for Smart and Safe Cyber-Physical Sys-
tems (MoDeS3) [Vör+18b] showcases various challenges in intelligent safety-
critical CPS. It extends the structure model of a railway system from the Train
Benchmark with a runtime model [BBF09] that tracks the positions of trains, which
enables detecting and correcting potentially unsafe situations by model-based
runtime monitoring [Bar+18; Búr+20].

Lastly, the Flexible Manufacturing System (FMS) [CT93] case study illus-
trates the performability analysis of an industrial CPS system using Petri nets.

4 Contribution overview

This thesis presents the contributions related to Research objectives 1–3 in
three groups. The groups are arranged starting from the theoretical foundations
to concrete extra-functional analyses. Figure 1 shows the relationship between
Research objectives 1–3, Challenges 1–5, and Contributions 1–3.

Contribution group 1 addresses Research objective 3 by proposing novel
partial model formalisms to represent graphs models with unknown or inconsistent
information along with extra-functional attributes of model elements.

Contribution group 2 provides structural and numerical reasoning capabilities
over the partial models to efficiently construct analysis models and provide over-
and under-approximation of extra-functional metrics. Taking advantage of these
capabilities, Contribution group 3 presents two architecture analysis methods.

The contribution groups are split into two contributions each. Contribution 2.1
provides reasoning capabilities with analysis models for dynamic architecture

12



Kristóf Marussy 4. Contribution overview

models, which are exploited in Contribution 3.1 for the phased-mission analysis of
reconfigurable CPS to address Research objective 1. Likewise, Contribution 2.2
provides reasoning capabilities over systems of linear equations and the sizes of
models, which are exploited in Contribution 3.2 for the WCET analysis of monitor
query programs to address Research objective 2.

As per university regulations, contributions in this section are formally proposed
using the first-person singular (“I”). The highlighted contributions, published in the
works cited therein, are the work of the author of this thesis alone. The rest of the
thesis follows the conventions of the field by using the first-person plural (“we”).

4.1 Partial modeling for quantitative extra-functional analysis
In order to tackle Challenges 3 and 5, the first group of contributions in this thesis
provides extended FOL structures to compute quantitative extra-functional metrics
of incomplete or inconsistent architecture models.

In Contribution 1.1.1, we proposed 4-valued partial models [j2], which adopt the
4-valued Belnap-Dunn logic [Bel77; KO17] to represent incomplete or inconsistent
models. We also introducedmulti-objects to compactly represent from zero to many
potential model elements with a single object by interpreting the existence and
equality of objects with 4-valued logic. Object equality can be also used to denote
the merging of elements from multiple sources of information [SE06; CNS12],
where inconsistency-tolerance is exploited to mark merge conflicts and conflicting
executions of composite view transformations [c7; d21] (Challenge 3).

In Contribution 1.1.2, we proposed an abstraction for numerical attribute values
and graph metrics [j2] (Challenge 5) in partial models by exploiting interval
abstraction [Kul09] to combine partial modeling with value analysis [FFJ12].

Lastly, in Contribution 1.2, we proposed scoped partial models [j1] as a conceptual
core for evaluatingmodel size constraints over partial models (Challenge 5). By em-
ploying polyhedron abstraction [BHZ08], they offer finer-grained abstraction over
the number of model elements represented by multi-objects. This allows represent-
ing extra-functional constraints on the number of model elements (e.g., model size
constraints, linear cost functions) within the partial model. As a limitation, scoped
partial models rely on 3-valued logic [SV17] and lack inconsistency-tolerance.

Contribution group 1 I defined 4-valued and scoped extensions of the partial
graph model formalism for the quantitative extra-functional analysis of system
architecture models with unknown properties and pending design decisions.

Contribution 1.1 I formalized 4-valued partial models as a conceptual core to
introduce inconsistency-tolerance into architecture models and other graph
models [j2; c7; d21].
1.1.1. I proposed the use of 4-valued Belnap–Dunn logic to explicitly capture

both unknown properties and pending design decisions (paracompleteness),
as well as inconsitencies (paraconsistency).

1.1.2. I proposed the use of interval abstraction to handle unknown and uncer-
tain attribute values, which enables the under- and over-approximation
of logic formulas over models containing complex numerical constraints.
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Contribution 1.2 I formalized scoped partial models as a conceptual core for
model generation with linear numerical constraints, proposing the use of
polyhedron abstraction to express constraints on model size, number of graph
pattern matches, and costs [j1].

Added value The contributions in this contribution group provide abstractions
for incomplete and inconsistent architecture models for evaluating structural and
numerical constrains and quantitative extra-functional metrics. As such, they serve
as a theoretical basis for the contributions in Contributions groups 2–3.

In particular, the under- and over-approximation of constraint satisfaction
enables the use of the abstract DPLL [NOT06; Bra+13] algorithms for the synthe-
sis of architecture models. They aid in detecting surely violated functional and
extra-functional requirements. Hence, when designing an architecture, mistakes
and inconsistencies can be detected even before the full model is ready [CNS12;
SV17][c7]. In automated synthesis, the detection of inconsistencies results in back-
tracking in the search space [SNV18; Var+18][j1] to speed up model generation.

To our best knowledge, these contributions are the first to address the sound
and complete abstract DPLL synthesis of candidate architecture models.

Applications and related contributions Contributions in this contribution
group were published as part of joint work with Dániel Varró, Oszkár Semeráth,
and Aren A. Babikian.

Joint work also with Zoltán Micskei, András Vörös, Zoltán Szatmári, and Csaba
Hajdu [c8] proposed an end-to-end framework for the run-time monitoring and
testing of autonomous vehicles with coverage metrics based on qualitative graph
abstractions. Building on this framework, joint work also with Anqi Li [j3; c9;
d20] investigated the synthesis of test cases for data processing systems and self-
driving vehicles by adopting constant abstraction to represent unknown attribute
values, which are then filled by an SMT solver [MB08]. This approach introduces
refinement units as a means to unify various reasoning techniques with partial
graph models and abstract domains.

4.2 Reasoning with partial models

The second group of contributions in this thesis is aimed at providing reasoning
capabilities over partial models for extra-functional analyses.

Contribution 2.1 [c7; d21] proposes a novel view transformation language and
a transformation engine as an open source prototype implementation primarily
aimed at the construction of analysis models from architecture models.

The transformation language provides parallel composition of transformation
to enable the integration of knowledge (such as the dependability attributes of
various system components in Challenge 3) from multiple experts. We introduced
relation-based composition, where the composition can be fine-tuned by providing
a glue transformation without having to modify the composed transformations.

Thanks to the change-driven execution of the underlying Viatra Query and
Transformation framework [Ujh+15], a reactive and target incremental transforma-
tion engine is obtained. Exploiting the inconsistency-tolerance of 4-valued partial
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models from Contribution 1.1, the proposed transformation engine remains vali-
dating (Challenge 2) and explicitly marks inconsistencies even if the composed
transformations or the state of the source model are not consistent. An implicitly
constructed traceability model links source and target elements so that analysis
results can be back-annotated to the architecture model.

Contribution 2.2 [j1] targets the synthesis of design candidates with multiplicity
constraints (i.e., structural constraints with lower or upper bounds on the number
of model objects or relationships) in Challenge 5. The proposed model generator
also supports an extended version of class scopes, which are a popular approach for
constraining model generation problems introduced by Alloy [Jac02].

More complex logical well-formedness constraints, as in Challenge 2, can
also be handled by manual translation to linear inequalities and scoped partial
models (Contribution 1.2).

Numerical reasoning is provided by Linear Programming (LP) and Integer
Linear Programming (ILP) solvers, such as [Clp; Cbc]. Based on these low-level
background theories, we provide scope propagation operators for scoped partial
models that refine under- and over-approximations for partial model metrics. The
refined approximations for metrics are used to prune the search space (Challenge
1) in an abstract DPLL [NOT06; Bra+13] decision procedure.

Contribution group 2 I proposed two reasoning techniques for deriving
quantitative extra-functional metrics from partial models of systems and con-
sidering multiplicity constraints on architecture models.

Contribution 2.1 I proposed a fully compositional view transformation lan-
guage and developed a reactive, incremental, validating, and inconsistency-
tolerant view transformation engine for executing view transformations using
4-valued partial models [c7; d21].
2.1.1. I identified the levels of parallel composition support in view transfor-

mation languages, as well as the consistent and validating properties of
view transformation engines.

2.1.2. I defined a fully compositional view transformation language.
2.1.3. I proposed a reactive, incremental, validating, and inconsistecy-tolerant

transformation engine for unidirectional view transformations based on
4-valued partial models.

2.1.4. I evaluated the practical applicability and scalability of the approach
using the open source Train Benchmark framework.

Contribution 2.2 I proposed a model generation approach that combines a
DPLL-like decision procedure based on partial modeling with LP and ILP
background solvers to synthesize and optimize models according to objective
functions defined as linear programs, such as multiplicity constraints, total
model size, and cost functions, using scoped partial models [j1].
2.2.1. I defined a mapping of structural and well-formedness constraints into

linear numerical constraints that can under- and over-approximated on
scoped partial models to efficiently guide model generation.

2.2.2. I extended an open-source graph solver with scoped partial model sup-
port by integrating LP and ILP solvers for numerical reasoning.

15



Kristóf Marussy 4. Contribution overview

2.2.3. I evaluated the effectiveness of the approach using multiple industrial
case studies, including a satellite constellation synthesis task from NASA
Jet Propulsion Laboratory.

Added value To our best knowledge, the presented transformation engine is
the first to support reactive, validating, inconsistency-tolerant execution of view
transformations with parallel composition [c7]. This allows for the collaboration of
multiple domain experts in the design of transformations, and the combination of
transformations relating to multiple viewpoints, while still enabling the validation
of target model structural constraints and the incremental maintenance of the
target model according to source model updates.

In our empirical evaluations, reasoning with scoped partial models provided a
7-fold reduction in running time for model generation in problems with complex
multiplicity constraints [j1]. Even in domains without such constraints, the over-
head added by scope propagation is minimal. While unsatisfiable problems usually
pose a difficulty to model generators based on partial modeling, scope propagation
operators can efficiently detect unsatisfiable multiplicity constraints with LP and
ILP background solvers, leading to much better scalability.

Applications and related contributions Contributions in this contribution
group were published as part of joint work with Dániel Varró and Oszkár Semeráth.

The proposed ViewModel view transformation engine is available as an open
source project under the Eclipse Public License 1.0 at https://github.com/ftsrg/
viewmodel and in [d21]. The tools has been applied for automatically constructing
Stochastic Petri Net (SPN) reliability analysis models for design candidates of
a redundant automotive subsystem in an industrial project with thyssenkrupp
Hungary Kft.

The implementation of the proposed scope propagation strategies is available as
part of the open source Viatra-Generator model generation framework under the
Eclipse Public License 1.0 at https://github.com/viatra/VIATRA-Generator.

Joint work also with Gábor Szárnyas, Aren A. Babikian, Boqi Chen, and Chuning
Li investigated the generation of realistic test cases for modelling tools by focusing
the generator towards practically relevant corner cases [j4]. To ensure the realistic
distribution ofmodel elements by type, we relied on numerical reasoning techniques
introduced in this contribution group.

Related contributions by my student Máté Földiák focused on numerical rea-
soning with reliability and performability metrics directly over partial models (in-
stead of constructing separate analysis models) by computing under- and over-
approximations. An initial prototype [c10; d22] was created that synthesizes
optimal satellite constellation mission architectures [Her+17] according to per-
formability objectives based on the refinement unit framework [j3; c9].

Joint work also with Boqi Chen and Sebastian Pilarski investigated the use logic
reasoning with graphs for ensuring consistency in image recognition [c11].

4.3 Model-based quantitative extra-functional analysis
The third group of contributions presents concrete applications of partial model
based reasoning for extra-functional analysis problems.
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Contribution 3.1 [c12; l18; r19] provides a model-based technique for the au-
tomatic performability evaluation (Challenge 3) of reconfigurable system archi-
tectures based on Stochastic Petri Net (SPN) analysis models. As a specification
language for performability properties, we adopt the incremental view transforma-
tions from Contribution 2.1 to derive SPN models for each possible configuration.

We introduced mission automata as an extension of the Graph Transformation
Abstract State Machine (GT+ASM) [VB07] formalism. The possible system failures
are described by the observable attributes of a run-time version of the architecture
model, which are defined based on the state of the SPN model and the traceability
relationships between the architecture and SPN models. The mission automaton
reacts to failures by changing the structure or the controllable attributes of the
run-time model with graph transformations. We construct a Phased-Mission Sys-
tem (PMS) [MB99] from the SPN analysis models, where the reachable state space
of the mission automaton serves as the high-level phase model.

Contribution 3.2 [j5] presents witness model synthesis in the domain-specific
Worst-Case Execution Time (WCET) analysis for graph query based runtime monitor
programs (Challenge 4). This allows us to tackle (i) WCET based on a single run-
time snapshot, (ii) WCET based on the metamodel and well-formedness constraints
of the runtime snapshots, and (iii) WCET based on a partial runtime snapshot.

Our analysis combines low-level Implicit Path Enumeration Technique (IPET)
WCET analysis with a high-level, domain specific analysis that takes into account
the well-formedness constraints of runtime models. We adapted the low-level IPET
analyses from the OTAWA [Bal+10] and aiT WCET analysis tools.

To obtain a high-level analysis, we associate auxiliary graph queries based on
the runtime monitor program with the variables of the IPET Integer Program to
form a graph-based description of the WCET analysis problem. We synthesize the
witness model using the extended generator from Contribution 2.2.

Contribution group 3 I proposed analysis methods for the reliability and
worst-case execution time estimation based on reasoning with partial models.

Contribution 3.1 I proposed a model-based technique for automatically deriv-
ing phased-mission stochastic Petri net models for complex reconfigurable
systems based on fully compositional view transformations [c12; l18; r19].
3.1.1. I defined mission automata, a formalism that leverages graph transfor-

mation abstract state machines (GT+ASM), as well as observable and
controllable runtime features in architecture models, for a high-level
description of runtime reconfigurations in cyber-physical systems.

3.1.2. I proposed a technique to construct phased-mission stochastic Petri nets
for the dependability analysis of reconfigurable cyber-physical systems,
where the reconfigurations are captured by a mission automaton, while
the reliability processes of the system are described by individual stochas-
tic Petri nets automatically constructed from the system architecture
models via a view transformation.

3.1.3. I evaluated the practical applicability and scalability of the approach on
a case study based on the analysis of a reconfigurable production cell.

Contribution 3.2 I proposed an approach for finding witness models of worst-
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case execution times of query-based runtime monitor programs in critical
embedded systems by model generation using scoped partial models with
linear programming [j5].
3.2.1. I proposed a high-level static analysis technique for query-based runtime

monitor programs to estimate execution time on a given runtime model
snapshot that combines domain-specific information from query plans
with state-of-the-art IPET low level analysis output about the microar-
chitectural characteristics of the target execution platform.

3.2.2. I formulated the witness generation problem as a model generation task
with a linear program objective.

3.2.3. I evaluated the practical applicability and scalability of the proposed
approach by generating witness models for queries from the open source
Train Benchmark in the context of the MoDeS3 CPS demonstrator.

Added value Model-based phased-mission system generation is an efficient,
architecture-based analysis method for reconfigurable CPS. In our experiments,
analysis models with up to 1028 different configurations could be constructed by
exploring the state space of mission automata within 20 sec.

In the MoDeS3 CPS demonstrator, domain-specific WCET analysis reduced
the metamodel-based WCET estimate with up to 12% compared to aiT and 25%
compared to OTAWA on queries where the well-formedness constraints of the
possible runtime snapshots impacted the execution time. It also managed to provide
partial model based WCET estimates, while aiT provided an incorrect (lower than
the actual program execution time of hardware) estimate due to its lack of partial
model based estimate support.

Applications and related contributions Contributions in this contribution
group were published as part of joint work with Dániel Varró, Brett H. Meyer, and
Márton Búr. The concept of a witness model [j5] was introduced by Búr [Búr21].

Our background work related to dependability and performability analysis
published jointly also with Miklós Telek, Tamás Bartha, Dániel Darvas, Ákos
Hajdu, Attila Klenik, and Vince Molnár focused on the numerical solution of
Generalized Stochastic Petri Net (GSPN) models. In [c13; c14], we proposed a con-
figurable GSPN analysis framework based on the block Kronecker decomposition.
In [c15], we proposed a symbolic state-space exploration engine for GSPN mod-
els. The analysis framework is available as part of the PetriDotNet [j6] tool at
https://inf.mit.bme.hu/en/research/tools/petridotnet and was applied for
the reliability analysis of a redundant automotive subsystem in an industrial project
with thyssenkrupp Hungary Kft.

Related contributions by my student Simon Nagy investigated hierarchical
reliability modeling and analysis based on statecharts and probabilistic program-
ming [c16]. The resulting tool is available as part of the open source Gamma
Statechart Composition Framework under the Eclipse Public License 1.0 at https:
//github.com/FTSRG/gamma. The tool was also used in our industrial project
and a case study model adapted from the project is available in the Models for
Formal Analysis of Real Systems (MARS) repository at http://mars-workshop.
org/repository/028-EPAS.html. Related contributions by my student Dániel
Szekeres investigated efficient numeric solution of large Continuous-Time Markov
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Chains (CTMC) arising from Static Fault Tree (SFT) analysis using the Tensor
Train decomposition for large matrices [c17]. An open source prototype im-
plementation of the analysis tool is available under the Apache License 2.0 at
https://github.com/ftsrg/StoATT.

5 Future work

Our long-term research goal is to facilitate the design of complex system architectures
according to various, stringent functional and extra-functional requirements by
unifying and developing reasoning techniques for their analysis and synthesis.

In particular, we highlight the following open challenges for future research:

• Integration of reasoning techniques within sound and complete design-space
exploration. While this work addressed the use of 4-valued logic [Bel77][c7;
j2] to explicitly highlight inconsistencies in architecture and analysis mod-
els, as well as polyhedron abstraction [CH78; BHZ08][j1] to reason about
model size constraints and other linear inequalities, the simultaneous use of
such abstractions remains unresolved. More broadly, the use of relational
abstractions [Min04] or other abstract domains could lead to more efficient
design-space exploration by pruning unsuitable design candidates earlier.

• Integration of external extra-functional analysis and reasoning tools. Partial
model based analysis approaches can reason about many variants of a given
design at once by explicitly encoding design decisions that are yet to be
made. Hence, feedback about candidate architectures can be provided early
in the design process. An initial attempt at integrating existing analyses as
refinement units was made in [j3; c9], where external SMT solvers [MB08]
are used to determine attribute values, and in [c10], where the performability
of architectures is estimated with Markov chains. Nevertheless, further
research is needed to improve analysis performance and explore the set of
extra-functional analyses which can be executed on partial architectures.

• Reasoning about system behavior during adaptation at runtime. Self-adaptive
strategies for run-time adaptation, where new system configurations are
synthesized at runtime in response to failure events of the system, require
quantitative verification of the configurations at runtime [Cal+12]. Sound and
complete design-space exploration techniques for configuration synthesis
could support provably sound adaptation strategies.
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