
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

AbstractionTechniques for the
Analysis and Synthesis of Critical

Cyber-Physical SystemArchitectures

PhD Dissertation

Kristóf Marussy

Thesis supervisor:
István Majzik, PhD

Budapest, 2023



Kristóf Marussy
http://home.mit.bme.hu/~marussy/

January 16, 2023

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar
Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.

http://home.mit.bme.hu/~marussy/


Declaration of own work and references

I, Kristóf Marussy, hereby declare that this dissertation, and all results claimed therein
are my own work, and rely solely on the references given. All segments taken word-by-
word, or in the same meaning from others have been clearly marked as citations and
included in the references.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Marussy Kristóf kijelentem, hogy ezt a doktori értekezést magam készítettem
és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó
szerint, vagy azonos tartalomban, de átfogalmazvamás forrásból átvettem, egyértelműen,
a forrás megadásával megjelöltem.

Budapest, 2023. január 16.

Marussy Kristóf

iii



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Dr. István Majzik, for
his guidance and patience.

I am thankful to all my former and present colleagues in the Critical Systems Research
Group, especially Prof. András Pataricza and Dr. Zoltán Micskei for their hard work in guiding
the research group. I would like to thank all my co-authors and colleagues: Aren A. Babikian,
Márton Búr, Krisztián Buza, Piroska Buzáné Kis, Boqi Chen, Dániel Darvas, Máté Földiák, Bence
Graics, Ákos Hajdu, Csaba Hajdu, Attila Klenik, Júlia Koller, Anqi Li, Chuning Li, Brett H. Meyer,
Vince Molnár, Simon József Nagy, Ladislav Peska, Oszkár Semeráth, Gábor Szárnyas, Zoltán
Szatmári, Dániel Szekeres, Tamás Bartha, Miklós Telek, Nenad Tomašev, Dániel Varró, András
Vörös, and others at Department of Measurement and Information Systems, the Department
of Computer Science and Information Theory, and the Department of Networked Systems and
Services at Budapest University of Technology and Economics, as well as the Department of
Electrical and Computer Engineering at McGill University. I was fortunate to work with many
talented students, including Márk Ángyán, Dóra Cziborová, Márton Marcell Golej, Zhekai Jiang,
Benedek Juhász, Tímea Molnár, Inez Anna Papp, Dávid Dorián Pete, Zsuzsanna Randóti, and
Dorottya Szabó.

Parts of this work were performed in the MTA-BME Lendület Cyber-Physical Systems
Research Group. This work was partially supported by

• ARTEMIS-JU and the Hungarian National Research, Development and Innovation Fund in
the frame of the R5-COP project;

• the ÚNKP-16-2-I and ÚNKP-18-3-I New National Excellence Programs of the Ministry of
Human Capacities;

• the ÚNKP-21-3-II New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and Innovation Fund;

• the EFOP-3.6.2-16-2017-00013 and EFOP-4.2.1-16-2017-00021 grants of the European Union,
co-financed by the European Social Fund;

• Project no. 2018-1.3.1-VKE-2018-00040 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed
under the 2018-1.3.1-VKE funding scheme;

• Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed
under the 2019-1.3.1-KK funding scheme;

• Schnell László Foundation; and
• the 2022 Amazon Research Award “Graph Solver as a Service”.

I am grateful to my hosts Prof. Vittorio Cortellessa, Romina Eramo, and Michele Tucci for
the research visit to the University of L’Aquila. I would also like to acknowledge the Student
Research Trainee program of McGill University. I would like to thank the researchers and
developers who provided guidance in interpreting their research results or assisted with using
their software tools: Clément Ballabriga, Julien Forget, Andrew S. Miner, and Martin Sicks.

I am also grateful to our industry collaborators: IncQuery Group GmbH, Péter Györke and
thyssenkrupp Hungary Kft., Péter Lantos and Prolan Zrt., and AbsInt GmbH.

Finally, but most importantly, I would like to extend my deepest gratitude towards parents
for their continuous support and encouragement.

iv



Köszönetnyilvánítás

Mindenekelőtt szeretnék köszönetet mondani konzulensemnek, Dr. Majzik Istvánnak az fáradha-
tatlan iránymutatásáért és türelméért.

Hálás vagyok továbbá minden korábbi és jelenlegi munkatársamak a Kritikus Rendszerek
Kutatócsoportból, különösen Prof. Pataricza Andrásnak és Dr. Micskei Zoltánnak a csoport
vezetéséért végzett áldozatos munkájukért. Szeretném továbbá megköszönni az összes társ-
szerzőmnek és munkatársamnak a közös munkát: Aren A. Babikiannak, Búr Mártonnak, Buza
Krisztiánnak, Buzáné Kis Piroskának, Boqi Chennek, Darvas Dánielnek, Földiák Máténak, Graics
Bencének, Hajdu Ákosnak, Hajdu Csabának, Klenik Attilának, Koller Júliának, Anqi Linek,
Chuning Linek, Brett H. Meyernek, Molnár Vincének, Nagy Simon Józsefnek, Ladislav Peskának,
Semeráth Oszkárnak, Szárnyas Gábornak, Szatmári Zoltánnak, Szekeres Dánielnek, Bartha Ta-
másnak, Telek Miklósnak, Nenad Tomaševnek, Varró Dánilnek, Vörös Andrásnak, és még sok
másnak a Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnikai és Információs
Rendszerek Tanszékéről, Számítástudományi és Információelméleti Tanszékéről és Hálózati
Rendszerek és Szolgáltatások Tanszékéről, valamint a McGill Egyetem Electrical and Computer
Engineering Tanszékéről. Szerencsém volt számos rendkívül tehetséges hallgatóval is együtt dol-
goznom: Ángyán Márkkal, Cziborová Dórával, Golej Márton Marcellel, Zhekai Jianggal, Juhász
Benedekkel, Molnár Tímeával, Papp Inez Annával, Pete Dávid Doriánnak, Radnóti Zsuzsannával
és Szabó Dorottyával.

A disszertációban bemutatott munka egy részét az MTA-BME Lendület Kiberfizikai Rendsze-
rek Kutatócsoportban végeztem. A munkát ezen felül támogatta

• az ARTEMIS-JU és a Nemzeti Kutatási, Fejlesztési, és Innovációs Alap az R5-COP projekt
keretében,

• az Emberi Erőforrások Minisztériuma ÚNKP-16-2-I and ÚNKP-18-3-I Új Nemzeti Kíválóság
Programjai,

• a Innovációs és Technológiai Minisztérium ÚNKP-21-3-II Új Nemzeti Kíválóság Programja
a Nemzeti Kutatási, Fejlesztési, és Innovációs Alap forrásából,

• az Európai Unió EFOP-3.6.2-16-2017-00013 és EFOP-4.2.1-16-2017-00021, melyet részben
az Európai Szociális Alap finanszírozott,

• a 2018-1.3.1-VKE-2018-00040 számú projekt a Nemzeti Kutatási, Fejlesztési, és Innovációs
Alap támogatásával lett végrehajtva a 2018-1.3.1-VKE pályázat finanszírozásával,

• a 2019-1.3.1-KK-2019-00004 számú projekt a Nemzeti Kutatási, Fejlesztési, és Innovációs
Alap támogatásával lett végrehajtva a 2019-1.3.1-KK pályázat finanszírozásával,

• a Schnell László Alapítvány, és
• a 2022 Amazon Research díj: „Graph Solver as a Service”.

Szeretnék köszönetet mondani Prof. Vittorio Cortellessának, Romina Eramonak és Michele
Tuccinak, hogy vendégül láttak a L’Aquilai Egyetemen. Hálás vagyok továbbá a kanadai McGill
Egyetem kutatói gyakornoki programjának. Szeretnék köszönetet mondani a kutatóknak és fej-
lesztőknek, akik segítettek az eredményeik értelmezésében és a szoftvereszközeik használatában:
Célment Ballabrigának, Juliet Forget-nek, Andrew S. Minernek és Martin Sicksnek.

Hálás vagyok ipari partnereinknek is, akikkel együtt dolgozhattam: az IncQuery Group
GmbH-nak, Györke Péternek és a thyssenkrupp Hungary Kft.-nek, Lantos Péternek és a Prolan
Zrt.-nek, valamint az AbsInt GmbH-nak.

Végül, de nem utolsó sorban, szeretném megköszönni szüleimnek kitartó támogatásukat és
bátorításukat.

v



Summary

Cyber-physical systems (CPS) are smart systems that include highly interconnected digital, analog,
physical, and human components. They are increasingly prevalent in safety critical applications,
such as infrastructure for self-driving cars and smart cities. This means that, in addition to their
functional requirements, critical CPS have to satisfy stringent extra-functional requirements,
including quantitative dependability, performance, and execution time requirements.

During the design of complex systems, the selected system architecture can have a profound
impact on the satisfaction on the extra-functional requirements. In architecture-based analysis,
specialized analysis models (e.g., stochastic models) are derived from candidate architectures by
view transformations in order to compute quantitative extra-functional measures. The definition
of appropriate transformations often requires integration of expertise from multiple viewpoints
(e.g., dependability attributes of both hardware and software components).

The large (even possibly unbounded) number of candidate architectures makes manual analy-
sis of all possible configurations intractable and necessitates automated design space exploration.
While (meta-)heuristic approaches can handle a wide variety of extra-functional requirements,
including those defined with the help of view transformations, they do not provide any formal
guarantees for the completeness of exploration. In contrast, logic solver based approaches of-
fer sound and complete reasoning, but problems with complex constraints, such as numerical
constraints either cannot be expressed at all or only at a steep performance penalty.

This work aims to improve the support for extra-functional requirements in reasoning over
architecture models. We aim to (1) facilitate analysis in the early stages of design by the use of
graph abstractions to explicitly describe unknown attributes of architectures and decisions yet to
be made, and (2) add support for extra-functional requirements to logic solvers while keeping
their previous formal guarantees intact.

Firstly, we adopt and extend partial models as a common theoretical foundation for (1) and (2).
We propose 4-valued partial models, as well as partial models with scope constraints about model
size and relationship multiplicities as graph abstractions for the analysis of architecture models.

Secondly, we provide reasoning capabilities over the proposed partial modelling formalisms.
For (1), we propose a fully compositional view transformation language and inconsistency-tolerant
transformation engine for 4-valued partial models. Moreover, for (2) we propose algorithms to
reason about partial models with scope constraints, which can effectively reduce the design
space to be explored.

Lastly, we propose concrete analyses based on the aforementioned modelling and reasoning
capabilities. We propose a mission automaton formalism to describe reconfiguration strategies.
This allows the construction of a Phased-Mission System of stochastic Petri nets to analyze the
dependabiltiy and performability of a reconfigurable system. Additionally, we exploit scope-
based numerical reasoning to tackle the witness model synthesis problem for the worst-case
execution time (WCET) analysis of query-based runtime monitors for critical distributed systems.
The highly data-driven nature of these programs posed a significant challenge for previous
WCET analysis tools.

As added value, view transformations and mission automata enabled the architecture-based
analysis of complex, reconfigurable systems. Incorporating scope propagations into a logic
solver based model generator achieved a significant speedup in architecture candidate generation
compared to state-of-the-art logic solver based techniques. The application of these techniques
to WCET analysis allowed tighter WCET estimates and the handling WCET analysis tasks where
previous methods were inapplicable.

The contributions of the thesis are demonstrated and evaluated on case studies adapted from
industrial problems and collaborations. Tools developed in the context of the work are available
as open-source software.

vi



Összefoglaló

A kiberfizikai rendszerek (CPS) olyan intelligens rendszerek, amelyek nagymértékben összekap-
csolt digitális, analóg és komponenseket tartalmaznak, emberekkel együttműködve. Az ilyen
rendszerek egyre elterjedtebbek a biztonságkritikus alkalmazásokban, mint például az önvezető
autókban és az intelligens városok infrastruktúrájában. Így a kritikus CPS-eknek a funkcionális
követelményeken túl szigorú extra-funkcionális követelményeknek is meg kell felelniük, beleértve
a kvantitatív megbízhatósági, teljesítmény- és végrehajtási idő követelményeket.

A komplex rendszerek tervezése során a kiválasztott rendszerarchitektúra nagymértékben
befolyásolhatja az extra-funkcionális követelmények teljesülését. Az architektúraalapú elemzés
során az architektúra javaslatokból nézeti transzformációkkal állítunk elő specializált analízis
modelleket (pl. sztochasztikus modelleket) a kvantitatív extra-funkcionális mérőszámok kiszá-
mítása érdekében. A transzformációk meghatározása gyakran több nézőpont szaktudásának
integrálását igényli (pl. a hardver- és szoftverkomponensek megbízhatósági attribútumai).

Az architektúra javaslatok nagy (esetleg korlátlan) száma miatt az összes lehetséges kon-
figuráció kézi elemzése lehetetlen, így a tervezési tér automatizált bejárása szükséges. Bár
a (meta-)heurisztikus stratégiák az extra-funkcionális követelmények széles skáláját képesek
kezelni – beleértve a nézet-transzformációk segítségével meghatározottakat is –, nem nyúj-
tanak formális garanciát a bejárás teljességére. Ezzel szemben a logikai megoldókon alapuló
megközelítések helyes és teljes körű érvelést kínálnak, de az összetett kényszereket, például
numerikus kényszereket vagy egyáltalán nem, vagy csak jelentős teljesítményveszteség mellett
lehet kifejezni a bemeneti nyelvükön.

Értekezésem célja, hogy javítsa az extra-funkcionális követelmények támogatását az architek-
túramodellek feletti következtetés során. Célom, hogy (1) megkönnyítsem – a még meghozandó
döntések explicit leírására gráf absztrakciók használatával – az elemzést a tervezés korai sza-
kaszában, valamint, hogy (2) kiegészítsem a logikai megoldókat a korábbi formális garanciák
megtartása mellett az extra-funkcionális követelmények támogatásával.

Egyrészt felhasználom és kibővítem a parciális modell formalizmust, mint az (1) és (2) felada-
tok közös elméleti alapját. Így a 4-értékű parciális modelleket és a darabszám kényszerekkel ellátott
parciális modelleket javasolom gráf absztrakcióként az architektúra modellek elemzéséhez.

Másrészt a javasolt részleges modellezési formalizmusok felett érvelési technikákat biztosítok.
Az (1) feldathoz teljesen komponálható nézeti transzformációs nyelvet és inkonzisztencia-tűrő
transzformációs motort javasolok a 4-értékű részleges modellek esetén. A (2) feladathoz algorit-
musokat javasolok az érveléshez a darabszám kényszerekkel ellátott parciális modelleken.

Végül konkrét elemzéseket javasolok a fenti modellezési és következtetési technikák felhasz-
nálásával. Az újrakonfigurációs stratégiák leírására a misszió automata formalizmust javasolom,
mely lehetővé teszi többfázisú missziós rendszer (Phased-Mission System, PMS) sztochasztikus
Petri-háló modellek felépítését újrakonfigurálható rendszer szolgáltatásbiztonságának elemzésére.
Továbbá felhasználtam a darabszám kényszeres érvelést, hogy megoldjam a tanú modell szintézis
problémát a kritikus elosztott rendszerek lekérdezésalapú futásidejű monitorainak leghosszabb
futásidő (Worst-Case Execution time, WCET) elemzéséhez.

A munka hozzáadott értéke, hogy a nézeti transzformációkkal és misszió automatákkal
lehetővé teszi a komplex újrakonfigurálható rendszerek architektúraalapú elemzését. A darab-
szám kényszerek beépítése egy logikai megoldó alapú modellgenerátorba jelentős gyorsulást
eredményez az architektúra javaslatok generálásában az eddigi legkorszerűbb logikai megoldó
alapú technikákhoz képest. Ezen technikák alkalmazása élesebb WCET becsléseket eredményez,
és olyan WCET elemzéseket is lehetővé tesz, ahol a korábbi módszerek nem alkalmazhatók.

Az értekezés kontribúcióit ipari problémákból és együttműködésekből adaptált esettanul-
mányokon keresztül mutatom be és értékelem. A munka során kifejlesztett eszközök nyílt
forráskódú szoftverekként érhetők el.

vii



Contents

Declaration of own work and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Nyilatkozat önálló munkáról, hivatkozások átvételéről (in Hungarian) . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Köszönetnyilvánítás (in Hungarian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Összefoglaló (in Hungarian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1
1.1 Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contribution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Formalisms for partial models 13
2.1 Modelling and metamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 4-valued partial models with attributes . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Scoped partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Fully compositional view transformations 35
3.1 An overview of compositional view transformations . . . . . . . . . . . . . . . . 36
3.2 Modelling and partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 View model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Multiplicity reasoning for consistent graph model generation 55
4.1 Models and partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Model generation with scope reasoning . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



Contents

5 Creating phased-mission models by view transformations 81
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Automated analysis model construction . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Mission automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Phased-mission analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Worst-Case Execution Time calculation for query-based monitors 95
6.1 Query-based runtime monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Formal background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Timing analysis of query-based monitors . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Summary of contributions 123
7.1 Partial modeling for quantitative extra-functional analysis . . . . . . . . . . . . 123
7.2 Reasoning with partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Model-based quantitative extra-functional analysis . . . . . . . . . . . . . . . . 126
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix
A Proofs of propositions from Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1 4-valued partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Scoped partial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B Proofs of propositions from Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C Proofs of propositions from Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ix





Chapter1
Introduction

1.1 Cyber-Physical Systems

Cyber-physical systems (CPS) are smart systems that include highly interconnected digital, analog,
physical, and human components. They provide new functionalities that improve quality of
life and enable technological advances in critical areas, such as personalized healthcare, traffic
flow management, smart manufacturing, energy supply, autonomous vehicles, and intelligent
buildings [NIST17].

The pervasive interconnectedness of computational and physical aspects, as well as the often
critical roles these systems are employed lead to specific characteristics of CPS that go beyond
traditional system and application design:

• CPS may be deployed in a wide variety of configurations and on heterogeneous computing
and communication platforms and are often composedwith other systems as part of a System
of Systems. Engineering such systems needs a methodology to ensure the interoperability
of components, manage the evolution of the requirements and the design, and deal with
any harmful phenomena emerging from the complex interactions.

• The potential impact of CPS on the physical world, up to the possibility of massive economic
damage or even the loss of life, places a heightened demand for trustworthy systems. These
concerns result in the need for rigorously proven security, privacy, safety, reliability, and
resilience. The systems may rely on runtime adaptation techniques to ensure that their
dependability objectives are met in the face of changes in the operating environment and
failure processes of the hardware [Epi+09; FB16; IW17].

• The interactions between CPS and their operating environment are often time sensitive.
There may be hard real-time requirements placed on certain functions. For example, we
must ensure that the latency between sensing and actuation remains limited for correct
control loops behavior.

Therefore, CPS have to satisfy stringent extra-functional requirements, such as maintainability,
reusability, extensibility, cost, security, privacy, safety, dependability, scalability, and performance,
in addition to their functional requirements [Fel03]. Model-driven engineering has been widely
applied as a methodology to facilitate CPS design in accordance with these goals, especially in
the context of changing and evolving requirements and architectures [Vog+15].

1



1. Introduction

1.1.1 Architecture-based analysis of extra-functional requirements

A large fraction of the extra-functional requirements is quantitative, i.e., they can be evaluated in
a mathematically precise way by computing some metric on either the CPS design artifacts or an
auxiliary analysis model. For complex metrics, the architecture models (e.g., block diagrams) of
the CPS are usually not sufficient, and we have to adopt specific mathematical formalisms for con-
structing analysis models. Among these, stochastic models, such as fault trees [Xia+11; Gha+17;
Get+18][c17], Markov chains [KB09], queuing networks [KR08], and Generalized Stochastic Petri
Nets (GSPN) [BMM99; BDD04; LMC04; Ndi+16; CET18][c7; c12], serve as analysis models for
reliability, availability, and performance metrics.

Manual creation of analysis models requires specialized expertise and meticulous work for
each architectural alternative to be analyzed. For complex design spaces, a large (or possibly
even infinite) amount of candidate architectures must be analyzed [CA05; KR11; GTC15]. Such
large-scale manual analyses are infeasible. To alleviate this problem, architecture based analysis
techniques, e.g., [BMM99; BDD04; FD16; KR08; Gha+17], have been developed, which rely on
model transformations to automatically construct analysis models from the architectural design
artifacts. However, these techniques can only handle static architecture models: the possible
runtime changes have to be fully described in the analysis model, e.g., as failure processes and
other random processes in the case of stochastic modeling.

To enable runtime monitoring and adaptation, the models@run.time paradigm [BBF09;
Che+11b; Búr+20] facilitates the capture of runtime knowledge about the system and its environ-
ment as a continuously maintained model. Although this allows applying model-driven engineer-
ing techniques to create adaptation and reconfiguration strategies, the mathematically precise
extra-functional analysis of such strategies raises a need for evaluating the extra-functional
properties of dynamic (changing) architecture models [Cal+12].

The first research objective investigated in this thesis aims to address this issue by extending
the architecture-based approach to the runtime adaptation strategies.

Research objective 1 Quantitative extra-functional analysis of dynamic system architec-
tures

1.1.2 Automated generation of design candidates

The large number of possible system configurations each with highly varying extra-functional
characteristics poses a major challenge to find the most suitable system architecture in an early
design phase [NIST17]. Engineers can manually inspect only a handful subset of candidate
architectures. Therefore, various automated design space exploration (DSE) tools have been
developed for system architecture synthesis to assist in finding viable candidate architectures that
satisfy all functional and extra-functional constraints while optimizing for a target objective.
DSE tools tackling this challenge are broadly classified into two categories:

(Meta-)heuristic techniques, such as genetic algorithms or multi-objective optimization
[Mar+10; Abd+14; GTC15; BZS18; Arc+18; FTW16], can support a wide variety of analyses
directly inside the DSE process to derive near-optimal design candidates. However, they do not
guarantee a complete (exhaustive) enumeration of the design space and the optimality of the
generated candidates [Ker+13]. Therefore, engineers are not informed about the cause of failure
(e.g., an unsatisfiable core) if the exploration fails to produce the desired candidates. Moreover,
encoding hard constraints (which must be satisfied at all times) either requires approximations by
custom soft constraints (which can be violated, but violating solutions are penalized), objective
functions and mutation operators, or it could significantly degrade the performance or scalability
of the exploration [SNP13; BZJ21].

2



1. Introduction

Logic solver based DSE techniques (e.g., [Jac02; KJS10]) have guaranteed soundness and
completeness. They usually allow encoding complex logical hard constraints and logical formulas
or model queries [CCR07; KHG11; Ujh+15; SNV18] and may provide an explanation when
the synthesis task is unsatisfiable. However, purely logical constraints cannot capture most
extra-functional requirements that rely on an external numerical solver to analyze. Thus, solvers
have to be specifically extended for optimization tasks, such as in [Li+14; BPF15] to handle both
logical and numerical constraints. Unfortunately, for complex extra-functional analysis tasks,
such optimizing solvers are often unavailable.

Recently, logic-solver based graph model generation has been suggested, which takes advan-
tage of partial modelling [RSW04; RD06] to explicitly represent design decisions yet to be made
in the internal representation of the solver as a graph model [SV17; SNV18]. This represents a
potential for applying architecture-based extra-functional analysis directly in the logic solvers to
generate design candidates with completeness guarantees while keeping expressiveness similar
to that of (meta)heuristic techniques.

The second research objective in this thesis focuses on this issue:

Research objective 2 Synthesis of candidate system architectures with completeness guar-
antees according to quantitative extra-functional requirements and objective functions

1.1.3 Representing uncertainty and variability

Both Research objective 1 and Research objective 2 require a representation of CPS archi-
tectures to analyze and synthesize. Architecture modeling languages, such as SysML, Palla-
dio [Mar+10], Æmilia [Arc+18], and domain specific languages rely on graph models to repre-
sent system architectures, configurations, and deployments on heterogeneous computing and
communication infrastructures [Vog+15]. In this setting, graph transformations can express
reconfigurations as endogenous (in-place) transformations of the architecture models, while
exogenous transformations can automatically derive analysis models as target models from the
source architecture models [Koz10].

However, both Research objective 1 and Research objective 2 pose challenges not yet
tackled by existing graph model representations.

1.1.3.1 Representations for view transformations

In Research objective 1, (endogenous) transformations for applying reconfiguration occur
at the same time as (exogenous) view transformations for maintaining analysis models. It is
possible to execute the view transformation from scratch after each reconfiguration, but this can
have significant performance costs, and leads to the loss of valuable traceability information
that connects the prior and current versions of the analysis model. Therefore, an ideal view
transformation engine [Ber+12a; CET18] is reactive (i.e. reacts to source model changes), target
incremental (i.e., updates only affected target elements), consistent (i.e., continuously maintains a
transformation relation between source and target models) and validating (i.e., the target model
is a valid instance of the target language).

A validating engine that satisfies all well-formedness constraints of the target language is at
odds with reactive and incremental execution: depending on the changes to the architecture
model, it may be the case that no valid target model exists at some time [c7]. By semantically
preserving inconsistencies in an inconsistency-tolerant knowledge base, a large fragment of the
source and view models can be kept sync in case of such model editing operations. This allows
preserving traceability links and provides hippocratic behavior (i.e. avoids the unnecessary
deletion and recreation of elements).

3



1. Introduction

Moreover, the development of the analysis model transformation usually requires the collabo-
ration of experts from multiple domains (e.g., embedded systems, communications infrastructure,
hardware reliability). Integrating their results requires combining partial information obtained
by model transformations created according to multiple viewpoints to construct the complete
analysis model [CNS12].

1.1.3.2 Representations for design-space exploration

Regarding Research objective 2, the need for partial and inconsistency-tolerant representations
of CPS architectures is even more explicit.

By introducing a fixed number of explicit points of variability into a system model, such
as the number of redundant component instances and the possible allocations of functions,
a genotype vector for systems models can be constructed [Mar+10]. This enables the use of
efficient meta-heuristic algorithms either on the level of architecture models [Ale+09; Mar+10;
Li+11; BFK19] or directly on the level of analysis models [GTC15].

While the aforementioned approaches offer scalability due to the fixed-length, domain-
specific genotype encoding, such encodings are not directly applicable for problems with a
variable number of objects and connections, such as communication network topologies. To this
end, logic solver based approaches for model synthesis [SV17; SNV18] rely on partial graph
models to encode design decisions yet to be made as unknown aspects of the design candidate
being worked on.

Conversely, representing inconsistencies that arise during the execution of decision proce-
dures can pinpoint contradictions in the requirements.

Because existing approaches with partial graph models have limited support for evaluating
extra-functional metrics [FFJ12], there is a need for extending partial graph model formalisms
with such support for the quantitative extra-functional analysis of CPS architectures. The
contributions presented in the thesis in connection with Research objective 2 aim to provide
reasoning capabilities over these extended partial model representations.

In summary, the following research objective arises as the common theoretical background
for Research objective 1 and Research objective 2:

Research objective 3 Represent uncertainty caused by design decisions yet to bemade, run-
time reconfigurations, as well as inconsistencies in complex system architectures explicitly

1.2 Background and challenges

In this section, we overview the state-of-the-art results connected to our research objectives and
identify five challenges to be addressed later in this thesis.

1.2.1 State space explosion

As we discussed in Section 1.1.2, the large number of possible hardware architectures, software
component allocations, and configurations poses a significant difficulty in the verification and
synthesis of design candidates. Even if we consider only a single node (component) type and a
single edge (link) type, there are 210×10 ≈ 1030 possible graph models with 10 nodes. Real system
design artifacts (e.g., SysML, Palladio, or domain-specific models) have both more node and edge
types, as well as more components. Thus, the design space formed by possible graphs models
can be much larger, or potentially infinite when we consider node attributes with continuous
range (e.g., probabilities and failure rates).

4



1. Introduction

Approaches based on (meta-)heuristics aim to tackle this problem by only exploring a fraction
of the design space. The heuristics, such as genetic algorithms, are used to sample parts of the
design space in an adaptive manner that are most likely to contain optimal solutions of the design
challenge. In this case, the explorations task consists of various hard and soft constraints on the
design candidates and one or more objectives (usually corresponding to extra-functional metrics)
to be optimized. As a benefit, a wide variety of constraints and objectives can be supported,
even in a multi-objective setting where Pareto-optimal [REJ09] solutions according to multiple
objectives are sought.

1.2.1.1 Genotype-based approaches

By translating the design candidates into a specialized parametric exploration representation,
such as a finite-dimensional vector, approaches like ArcheOpteryx [Ale+09], AQOSA [Li+11],
PerOpteryx [Mar+10], EvoChecker [GTC15], and Rodes [Cal+17] can execute genetic algorithms
on design candidates with a high probability of convergence to near-optimal solutions. For
example, a fixed number of parameters might be introduced for the allocations of software
components to the hardware platform and for the available component variants. However, in
many graph-like problems, were the number of components and their interconnections are also
variable, it is either impossible to introduce such a finite parametrization, or the required number
of parameters (e.g., at least =2 parameters for links in a graph with = nodes) grows infeasibly
large.

1.2.1.2 Graph-based approaches

In contrast, graph-based techniques use graph transformations [Agr+02] or refactorings to
generate candidate designs as graph models. They either rely on model-based search, where a
graph model is being mutated, or rule-based search, where solutions are encoded as a sequence
of graph transformation operations [Joh+19]. MOMoT [FTW16] and MDEOptimiser [BZS18]
rely on the Henshin model transformation language [Are+10] for model-based exploration. Hard
constraints pose a challenge for such approaches: they are either handled by relaxation into soft
constraints or by encoding them in the transformation rules [BZJ21].

Viatra-DSE [Abd+14; HHV15] is a rule-based DSE tool that relies on the Viatra [Ujh+15]
language. SHEPhERd [CMP15] and EASIER [Arc+18] aim to derive sequences of software
architecture refactorings according to extra-functional criteria. Synthesizing long chains of model
transformations might be challenging in the presence of hard constraints; e.g., the effectiveness
of evolutionary crossover operators is diminished compared to mutation operators [Abd+14].

Challenge 1 How to represent design candidates and perform search and analysis in the
extremely large design and configuration spaces arising from complex CPS?

1.2.2 Functional and structural constraints

In model-driven engineering, general-purpose or domain-specific systems modeling languages
(e.g., UML, SysML, Palladio [BKR08]) are used to represent system architectures. Such languages
are defined by (1) ametamodel to capture the vocabulary of language with classes and references,
while (2) consistent (valid) systems models also have to satisfy well-formedness (WF) constraints.

We will assume that first-order logic (FOL) can uniformly formalize (a) the constraints
associated with the systems modeling language, (b) additional design rules, and (c) functional
requirements. For example, if the system modeling language can describe the physical and
functional system architecture and their allocations, FOL constraints can capture whether all

5



1. Introduction

functions are allocated to physical components in a valid manner. Thus, as a theoretical basis,
we may use FOL signatures and logic formulas to capture metamodels and WF constraints,
respectively.

Structural constraints, including type hierarchy, type compliance, multiplicity constraints,
inverse relations, and the containment hierarchy are often imposed by model management frame-
works to ensure that the model artifact remains serializable [Ste+09]. Several highly expressive
languages exist for the specification of well-formedness constraints, e.g., OCL [OCL] and Via-
tra [Ber+11].

As such, generating valid models requires solving a logical program with the satisfaction of
user-provided FOL formulas as hard constraints, which is highly challenging even in the absence
of extra-functional metrics [CCR07; KHG11; Var+18]. Typically, only a small fraction of the
possible model candidates will satisfy the complex logical hard constraints.

FOL hard constraints often pose a challenge in (meta-)heuristic DSE approaches. Burdusel et
al. [BZJ21] proposed the automated generation of transformation rules that preserve a limited
class of WF constraints (multiplicity constraints). PLEDGE [SSB20] combines evolutionary
search with logic solving to preserve WF constraints over object attributes. Other, more complex
FOL constraints cannot be encoded and have to be relaxed into soft constraints.

Logic solver based techniques for FOL problems include constraint programming, such
as in UMLtoCSP [CCR07] and DesertFD [ENS10], SAT solving, such as in Alloy [Jac02] and
CoBaSA [MVS07], and Satisfiability Modulo Theories (SMT), such as in FORMULA [KJS10].

SAT and SMT solvers commonly rely on the Davis-Putnam-Logemann-Loveland (DPLL)
[DLL62; Kat+16] and the abstract DPLL [NOT06; Bra+13] algorithms for an efficient, complete
enumeration of the design space. However, scalability of logic solvers may be limited in the case
of graph-like synthesis problems [SNV18].

Recently, partial modeling [RSW04; Ren06] based graph generation was proposed [SNV18] as
an implementation of a DPLL decision procedure for graph models, which improves performance
over SAT solver for graph model generation. Nevertheless, integrating partial modeling based
DPLL with other background theories for SMT solving, e.g., for attribute constraints, remains
challenging.

Challenge 2 How to ensure that functional and structural constraints are satisfied in archi-
tecture and analysis models?

1.2.3 Dependability analysis models for reconfigurable systems

Specifying and analyzing extra-functional metrics and requirements in an architecture-based
manner may pose significant challenges in complex, adaptive and reconfigurable systems. Not
only an analysis model has to be constructed from the system architecture automatically, but
the analysis itself must also remain tractable.

Methods for the construction of stochastic analysis models are widespread in the evaluation
of dependability (including reliability and availability), and performance metrics based on archi-
tecture models, especially for component-based design [Koz10; BMP12]. Underlying analysis
formalisms include fault trees [JVB17; Xia+11; Gha+17; Get+18], Markov chains [KB09], queuing
networks [KR08], and Generalized Stochastic Petri Nets (GSPN) [MPB02; BDD04; MB15; Ndi+16;
CET20].

The dependability attributes and failure processes may be described in two ways: (a) They may
be represented directly in the architecture model using, e.g., UML stereotypes [MPB02], MARTE
annotations [Iqb+15] or the AADL Error Annex [JVB17; Ale+09]. Alternatively, (b) the transfor-
mation definition itself may encode the dependability attributes of the components (as analysis
model fragments). To retain flexibility in the transformation definition and aggregate knowledge

6



1. Introduction

for multiple domain experts, transformation definitions may be composed sequentially [Anj+14;
Heg+16] or in parallel [CNS12; DXC11], where the various elementary transformations to be
composed describe the dependability attributes of different parts of the system.

The analysis of adaptive systems poses further challenges. If the adaptations are dynamically
synthesized in response to failures and events from the environment, quantiative verificationmust
be employed at runtime [Cal+12] to verify the proposed adaptations. If the system uses a static
adaptation strategy, an analysis model that includes the behaviors of all possible configurations
of the system along with the strategy may grow so large that it makes the analysis intractable.

To alleviate this issue, Phased-Mission System (PMS) [MB99] models were developed, where
phases, which are stochastic models (e.g., fault trees, Markov chains, GSPNs) describing the
behaviors of system configurations, are connected by a high-level model describing the adaptation
strategy. Numerical [SRA92; MB99] or combinatorial [Xin07; WT07] analysis methods can
process phases one-by-one, connecting the individual models later according to the high-level
model. Therefore, this formulation reduces both the memory and computation demands of
extra-functional analysis.

However, to our best knowledge, while analysis models for individual phases can be con-
structed from architecture models by model transformations, no approach supports simulta-
neously deriving all phases and the high-level model for the PMS analysis of an adaptation
strategy.

Challenge 3 How to compactly specify and analyze dependability measures for families of
reconfigurable architecture model candidates?

1.2.4 Witness models for Worst-Case Execution Time Analysis

In embedded systems, runtime monitoring programs are integral components of the system that
analyze events and execution traces [Bar+18] in order to detect potentially critical situations
that violate a requirement. Task schedulability and real-time requirements demand the use of
runtime monitors that adhere to Worst-Case Execution Time (WCET) constraints [Pik+10; HR02].

According to the models@run.time [BBF09; Che+11b] paradigm, runtime monitors are con-
tinuously executed on runtime snapshots, i.e., models describing the runtime state of the system.
The heavily data-driven execution of such runtime monitors compared to the low expressiveness
of traditional runtime monitoring solutions [Hav15] makes producing analysis models for safe
and tight WCET estimation challenging [Búr+18; Har+19; DBB18]. This necessitates the use of
semantic-aware WCET estimation [Mai+17] to consider limitations on input data (i.e., constraints
restricting the possible runtime snapshots).

The Implicit Path Enumeration Technique (IPET) [LM97] constructs Integer Linear Programs
(ILP) asWCET analysis models according to the Control Flow Graph (CFG) on the runtimemonitor
programs. The IPET ILP can accurately represent the microarchitectural timing characteristics of
the target execution platform along with the control flow of the program.

The effectiveness of WCET analysis relies on precise program flow facts (e.g., loop bounds,
infeasible paths). Although there are several algorithms to derive additional constraints on the
program flow [Gus+06; Erm+07; CJ11; KKZ13; Lis14], there is still a significant manual effort
needed to specify flow facts [Abe+15] to represent domain-specific semantic information about
program inputs.

We identified three domain-specific analysis scenarios for runtime monitors: (i) WCET
based on a single runtime snapshot, (ii) WCET based on the metamodel and well-formedness
constraints of the runtime snapshots, and (iii) WCET based on a partial runtime snapshot. The
latter enables reasoning when some information is fixed at design time (e.g., a railway network)
while the rest of the model changes at runtime (e.g., the positions of trains).

7



1. Introduction

Classical WCET analysis methods (without domain-specific analysis) can handle scenario (i)
by data flow analysis. However, they require over-approximations based on loops bounds for
scenario (ii), because they cannot take well-formedness constraints of runtime models into
account. They fail to address scenario (iii), because data flow analysis cannot process partial
data that without a pre-allocated memory layout.

In [Búr21][j5], Búr proposed witness models to tackle scenarios (ii) and (iii). The witness
model is a concrete runtime snapshot that maximizes the estimated upper bound of the execution
time of the runtime monitor. Thus, it provides a safe and tight estimate of the WCET. However,
synthesizing the witness model based on the domain constraints remains challenging.

Challenge 4 How to synthesize witness models for domain-specific Worst-Case Execution
Time evaluation?

1.2.5 Numerical reasoning with extra-functional attributes

The analysis of quantiative extra-functional properties requires numerical (quantitative) reasoning
for evaluating numerical constraints over the attributes of the architecture models, as well as
computing extra-functional metrics during synthesis.

In the case of (meta-)heurisic synthesis approaches, a concrete candidate architecture is
available at all times during synthesis. Thus, analysis models can be constructed by model
transformations and analyzed using analysis tools, such as in [Ale+09; Mar+10; Li+11; FTW16;
BZS18].

In logic solvers, the supported metrics and objectives is limited by the input language and
the supported background theories [Kat+16]. For supported theories, optimizing SMT solvers
provide capabilities for finding globally optimal solutions [Li+14; BPF15]. The Nelson–Oppen
procedure [NO79] is widely employed as means of combining background theories.

However, the scalability of traditional logic solvers may be limited in the case of graph-like
synthesis problems [SNV18]. Tableau-based reasoning for graphs has been proposed in [Pen08;
SLO17; ADW16], but these approaches lack the support for reasoning with extra-functional
properties.

In abstract interpretation, abstract domains [CH78; SPV18] are used to reason about the (nu-
merical) values of program variables and expressions. Relational abstract domains, such as poly-
hedron abstraction [CH78; BHZ08] can represent arbitrary numerical relationships between arbi-
trary program variables. Reasoning techniques for polyhedra include Linear Programming (LP)
and Integer Programming (IP) solvers [Clp; Cbc], as well as specialized representations [Nin15].

In contrast, non-relational domains, such as interval abstraction reduce expressiveness by
restricting each representable numerical constraint to only refer to a single variable, but offer
more efficient reasoning e.g., by interval arithmetic [Kul09] and propagators [Nin15].

Even though partial modeling [RSW04; Ren06] based graph generation has been recently
proposed [SNV18] as an implementation of a DPLL [Kat+16] decision procedure for graphmodels,
the support for numerical reasoning remained lacking. There are two sources of quantitative
values in a graph model: (i) objects of the model may be equipped with numerical attributes
(e.g., elementary performance or dependability metrics), and (ii) the size or cost measures may
depend on the number of objects.

For (i), the combination of abstract domains and partial models [Mag+07; MRS10; FFJ12]
was proposed, especially for the value analysis of heap and pointer-based programs [APV09],
where partial models represent possible program states. For (ii), the most closely related works
are structural counter abstraction [Ban+13] for graph transformation systems and model-based
quantifier instantiation [Rey+13] in SMT solvers. Representing models with numerical attributes
where the model size (and thus the number of attribute values to be represented) is not known

8



1. Introduction

Table 1.1: Research objectives and challenges

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5

Research objective 1 #   # #

Research objective 2   #   

Research objective 3 # #  #  

in advance has been tackled by summarized dimensions [Gop+04].
However, the aforementioned techniques do not in themselves provide a sound and complete

decision procedure for graph generation, and their use remains limited to program verification.
Partial modeling allows a sound and complete decision procedure for graph generation and

synthesis by computing under- and over-approximations of the constraints to be satisfied [SV17]
following the abstract DPLL [NOT06; Bra+13] framework. However, its use is currently limited to
logical (FOL) well-formedness constraints. Thus, the use of numerical abstractions over (i) model
attributes and (ii) model size, as well as the combination of various reasoning techniques in the
context of graph models remains challenging.

Challenge 5 How to reason about the quantitative extra-functional aspects of complete or
incomplete system architectures automatically and efficiently?

The relationships between our research objectives and the aforementioned challenges are
summarized in Table 1.1.

1.3 Research method

My research method has been aligned with the best practices of software engineering research.
Research objectives 1–3 were motivated by generalizing industrial problems and case stud-
ies. The feasibility and applicability of the contributions were demonstrated by open source
prototype implementations, while their scalability was evaluated by synthetic and real-world
performance benchmarks. The prototypes are integrated with industrial and academic tools,
such as EMF [Ste+09], Viatra Query [Ujh+15], Viatra Generator [SNV18], and PetriDotNet [j6].

In particular, the following benchmarks and case studies were used to motivate and evaluate
the contributions:

The Interferometry Mission Architecture Optimization [Her+17] case study was
adapted from the NASA Jet Propulsion Laboratory. It aims at deriving design candidates for
interferometry missions with multiple satellites (including CubeSats and small satellites) commu-
nicating over radio links with each other and a ground station using an optimization approach
based on model transformations.

The Train Benchmark [Szá+17] is an open source framework for measuring the perfor-
mance of continuous model transformations, with a particular emphasis on the performance of
incremental query reevaluation. It has been actively used within the model-driven engineering
community as a cross-technology performance benchmark. It uses a domain-specific model of a
railway system originating from the MOGENTES EU FP7 [MOG] project.

TheModel-BasedDemonstrator for Smart and SafeCyber-Physical Systems (MoDeS3)
[Vör+18b] showcases various challenges in intelligent safety-critical CPS. It extends the structure
model of a railway system from the Train Benchmark with a runtime model [BBF09] that tracks
the positions of trains, which enables detecting and correcting potentially unsafe situations by
model-based runtime monitoring [Bar+18; Búr+20].

9



1. Introduction

 Obj. 3 Represent uncertainty, points of variability, run-time  
recon�igurations, and inconsistencies in complex architectures

Contribution group 1 
Partial modeling 

 Obj. 2 Synthesis of candidate 
 system architectures with 

completeness guarantees w.r.t. 
 extra-functional objectives 

 Obj. 1 Architecture-based 
 extra-functional analysis of 
 complex, recon�igurable  

  systems 

Contribution group 2
Reasoning 
with partial models

Contribution group 3 
Model-based analysis 

1.1. 4-valued partial models
 with interval abstraction  

Addresses Ch. 3 and 5

1.2. Scoped partial models
 with polyhedron abstraction  

Addresses Ch. 5

2.2. Model generation with
 multiplicity constraints  
Addresses Ch. 1, 2, and 5

3.1. Architecture-based
 phased-mission analysis  

Addresses Ch. 3

3.2. Witness model synthesis
 for WCET analysis  

Addresses Ch. 4

2.1. Inconsistency-tolerant
 view transformations  
Addresses Ch. 2 and 3

Figure 1.1: Overview of research objectives and contributions

Lastly, the Flexible Manufacturing System (FMS) [CT93] case study illustrates the per-
formability analysis of an industrial CPS system using Petri nets.

1.4 Contribution overview

This thesis presents the contributions related to Research objectives 1–3 in three groups.
The groups are arranged starting from the theoretical foundations to concrete extra-functional
analyses. Figure 1.1 shows the relationship between Research objectives 1–3, Challenges 1–5,
and Contributions 1–3.

Contribution group 1 addresses Research objective 3 by proposing novel partial model
formalisms to represent graphs models with unknown or inconsistent information along with
extra-functional attributes of model elements.

Contribution group 2 provides structural and numerical reasoning capabilities over the
partial models to efficiently construct analysis models and provide over- and under-approximation
of extra-functional metrics. Taking advantage of these capabilities, Contribution group 3
presents two architecture analysis methods.

The contribution groups are split into two contributions each. Contribution 2.1 provides
reasoning capabilities with analysis models for dynamic architecture models, which are exploited
in Contribution 3.1 for the phased-mission analysis of reconfigurable CPS to address Research
objective 1. Likewise, Contribution 2.2 provides reasoning capabilities over systems of linear
equations and the sizes of models, which are exploited in Contribution 3.2 for the WCET analysis
of monitor query programs to address Research objective 2.

Contribution group 1 I defined 4-valued and scoped extensions of the partial graph model
formalism for the quantitative extra-functional analysis of system architecture models with
unknown properties and pending design decisions.

10



1. Introduction

• Contribution 1.1 I formalized 4-valued partial models as a conceptual core to introduce
inconsistency-tolerance into architecture models and other graph models [j2; c7; d21].

• Contribution 1.2 I formalized scoped partial models as a conceptual core for model gen-
eration with linear numerical constraints, proposing the use of polyhedron abstraction
to express constraints on model size, number of graph pattern matches, and costs [j1].

Contribution group 2 I proposed two reasoning techniques for deriving quantitative extra-
functional metrics from partial models of systems and considering multiplicity constraints
on architecture models.

• Contribution 2.1 I proposed a fully compositional view transformation language and
developed a reactive, incremental, validating, and inconsistency-tolerant view transfor-
mation engine for executing view transformations using 4-valued partial models [c7;
d21].

• Contribution 2.2 I proposed a model generation approach that combines a DPLL-like
decision procedure based on partial modeling with LP and ILP background solvers
to synthesize and optimize models according to objective functions defined as linear
programs, such as multiplicity constraints, total model size, and cost functions, using
scoped partial models [j1].

Contribution group 3 I proposed analysis methods for the reliability and worst-case execu-
tion time estimation based on reasoning with partial models.

• Contribution 3.1 I proposed a model-based technique for automatically deriving phased-
mission stochastic Petri net models for complex reconfigurable systems based on fully
compositional view transformations [c12; l18; r19].

• Contribution 3.2 I proposed an approach for finding witness models of worst-case
execution times of query-based runtimemonitor programs in critical embedded systems
by model generation using scoped partial models with linear programming [j5].

The rest of this thesis is structured as follows:

• Chapter 2 presents Contributions 1.1 and 1.2 after reviewing some preliminary notions
for domain modeling. The introduced concepts are illustrated using the Interferometry
Mission case study from NASA JPL. The corresponding formal proofs are relegated to
Appendix A.

• Chapter 3 presents the view transformation language and engine which comprise Contri-
bution 2.1. The applicability and effectiveness of the approach is demonstrated using the
open-source Train Benchmark.

• Chapter 4 presents the graph generator, which comprisesContribution 2.2. The applicability
and effectiveness of the approach is demonstrated using Interferometry Mission case
study, as well as two other case studies frommodel-driven engineering. The corresponding
formal proofs are relegated to Appendix B.

• Chapter 5 presents the architecture-based construction of Phased-Mission Systems, which
comprises Contribution 3.1. The applicability and effectiveness of the approach is demon-
strated using the Flexible Manufacturing System case study.

• Chapter 6 presents witness model synthesis for WCET analysis, which comprises Contri-
bution 3.2. The applicability and effectiveness of the approach is demonstrated using the
MoDeS3 case study. The corresponding formal proofs are relegated to Appendix C.

• Finally, Chapter 7 summarizes the proposed contributions and highlights possible avenues
for future work.

11





Chapter2
Formalisms for partial models

Quality assurance of critical software-intensive systems frequently relies on the automated
synthesis of test data to reduce conceptual gaps in the test cases. When testing domain-specific
modeling tools, or autonomous cyber-physical systems in model-based systems and software
engineering scenarios, test data takes the form of typed and attributed graph models. Automated
model generators are key technologies to address the needs of such testing scenarios.

A model generator needs to derive consistent models where each model needs to satisfy
(or deliberately violate) a set of constraints captured in the form of OCL constraints or graph
predicates. Logic solvers (like SMT-solvers, SAT-solvers, CSP-solvers) have been frequently
providing precise foundations for such model generators in tools like Alloy, USE, UMLtoCSP,
Formula, etc. However, a recently emerging family of model generators, like PLEDGE [SSB20]
or the Viatra Solver [SNV18], addresses the consistent model generation challenge directly on
the level of graph models by sophisticated search strategies (like multi-objective optimization
or SAT-solving algorithms) and powerful abstractions provided by 3-valued partial models and
partial model refinement [Var+18]. To fine-tune the model generation process, iterative and
incremental approaches [SVV16] are proposed where models obtained as output in a previous
run can be used as inputs (e.g. required or forbidden model fragments) in subsequent runs.

Unfortunately, partial modeling tools are limited in their support for reasoning with (i) in-
consistent information (such as conflicts in model merging scenarios) and with (ii) numerical
information about the attributes of the number of objects in a partial model. While SMT solvers
may rely on SMT bakcground theories [Kat+16] for reasoning about numerical variable and
the Nelson–Oppen [NO79] procedure for the combination of theories, support for numerical
information in partial modeling remains limited. The combination of abstract domains [CH78;
SPV18] and partial models [Gop+04; Mag+07; MRS10; FFJ12] was proposed for value analysis of
pointer-manipulating programs [APV09].

However, the aforementioned techniques do not in themselves provide a sound and complete
decision procedure (as in graph generation) for partial models with numerical values. In particular,
there is presently no support for reasoning about the size of the possible solutions represented
by a partial model, even though related techniques like structural counter abstraction [BCK01;
Var+06; KK08; KK06; Ban+13] and model-based quantifier instantiation [Rey+13] are in use for
the analysis of graph transformation systems and in SMT solvers, respectively.

This chapter presents the following contributions:

• We propose 4-valued partial models based on the first-order, inconsistency-tolerant Belnap–
Dunn 4-valued logic [Bel77; KO17] as semantic framework for possible partial (paracom-
plete) or inconsistent (paraconsistent) graph models. In addition to highlighting inconsis-
tencies and conflicts between constraints during graph generation, such model can also

13



2. Formalisms for partial models

represent merge conflicts during relationship-based model merge operations [CNS12][c7].
As a benefit over merely marking merge conflicts, the precise semantics Belnap–Dunn
logic enable evaluating model queries and reasoning over inconsistent models without
encountering the principle of explosion of ordinary (2-valued) logic.

• We integrate interval abstraction [Min04; Kul09; JM09] into 4-valued partial models (in a
manner similar to [FFJ12]) to store and reason about numerical attribute values in graph
models. As a key novelty, the error ( ) logic value of Belnap–Dunn logic enables uniform
treatment of calculations that fail at runtime (e.g., due to division by zero) as conflicts
during model generation, integrating attribute constraints into the partial model based
model generation framework [j2; j3].

• We propose scoped partial models, which use polyhedron abstraction [CH78; BHZ08] to
store and reason about linear constraints over the size of models, such as type scope [Jac02]
constraints and linear cost functions. We formulate model generation [j1] and model
optimization [j5] tasks with linear constraints and linear objective functions.

As a result, partial models with (i) conflicts and (ii) numerical information can be described
in a mathematically precise intermediate language along with their (structural and numerical)
well-formedness constraints in a technology-independent way. These formalisms can serve
as (a) problem representations as the input of model generators, (b) internal representations for
exploring state spaces of partial models, e.g., using the abstract DPLL [NOT06; Bra+13] algorithm
as a search strategy, and (c) output representations highlighting conflicts between requirements or
as partial solutions in iterative (multi-step) model generation. A concrete syntax for serializing
4-valued partial models serving in these roles was proposed in [j2].

We describe reasoning techniques for 4-valued partial models and for scoped partial models
in Chapters 3 and 4, respectively.

We demonstrate the formalisms on a sequence of examples adapted from an architecture
synthesis case study proposed by engineers at the NASA Jet Propulsion Lab.

The contents of this chapter are based on the journal papers [j1; j2].

2.1 Modelling and metamodels

A large set of industrial modeling tools (including e.g., Capella, Artop, Yakindu, Papyrus, etc.)
use DSLs as conceptual foundation. The specification of a DSL typically starts from defining a
metamodel (MM) and a set of well-formedness constraints (WF). A metamodel defines the main
concepts and relations in a domain imposing the basic graph structure of instance models. WF
constraints further restrict consistent (or valid) instance models of the language by defining
additional design rules. In this paper, we use the Eclipse Modeling Framework (EMF) [Ste+09]
metamodels and Viatra well-formedness constraints [VB07; Ujh+15] as a technical foundation
for domain modeling, which is also used in those industrial tools above as well as in [Her+17].
Conceptually, the graph generation approach could be applied on other modeling formalisms
too, e.g. UML Class Diagrams for defining the types and Object Constraint Language (OCL,
[OCL]) for defining constraints as in [SAB09; SSB17].

Example 2.1 The metamodel for interferometry constellation missions is shown in Fig. 2.1
using an EMF notation. An InterferometryMission consists of communicating CommElements
(as EClasses), which are equipped with CommSubsys subsystems (i.e., antennas with different
radio frequencies) through their subsys EReferences for Ka, X, and UHF bands.
Spacecraft of different sizes, including cube satellites Cube3U and Cube6U, as well as small
satellites SmallSat, may carry interferometry Payloads (photo sensors), and must be able to

14



2. Formalisms for partial models

Comm-
Subsys GroundStation

KaComm

Spacecraft

UHFCommXComm

[0..1]
target

[1..2] subsys [1..1] station

[0..1]
payload

CommElement InterferometryMission

Cube3U SmallSatCube6U

[2..*]
spacecraft

Payload

KaComm

! SmallSat 
! GroundStation

∃ 

subsys

at Figure 2.1: Example metamodel
and WF constraint error pattern

reach the GroundStation via radio links (to send sensor data) denoted by the target references.

As a foundation for generating consistent models first, we need a precise formal framework
to specify DSLs for which purpose we rely on [Sem+17; JLB11; SV17; Jac02; CCR07; FSC12].

2.1.1 Metamodels

The metamodel defines the main concepts and relations of the target domain.

Definition 2.1 (Metamodel) A metamodel corresponds to a signature 〈Σ, U〉, where

• Σ = {ε,∼, int} ] ΣC ] ΣR ] ΣA ] ΣF is the set of logical symbols;
• U : Σ → ℕ is the arity function;
• ε is the object existence symbol with U (ε) = 1;
• ∼ is the object equality symbol with U (∼) = 2;
• int is the integer type symbol with U (int) = 1;
• ΣC = {C1, . . . ,C2 } is the set of class symbols with U (C8) = 1 for each C8 ∈ ΣC;
• ΣR = {R1, . . . ,RA } is the set of reference symbols with U (R8) = 2 for each R8 ∈ ΣR;
• ΣA = {A1, . . . ,A0} is the set of attribute symbols with U (A8) = 2 for each A8 ∈ ΣA; and
• ΣF = {F1, . . . , F5 } is the set of predicate symbols.

To represent an EMF metamodel, we add a class symbol C ∈ ΣC for each EClass, a reference
symbol R ∈ ΣR for each EReference, and an attribute symbols A ∈ ΣA for each EAttribute. The int
symbol corresponds to the EInt datatype.

This formalism, in accordance with the EMF standard, handles references as relations: edges
do not have identities and parallel edges of the same EReference are not allowed. Since our current
work focuses on model generation for the structural part of graph models (i.e. nodes/objects and
edges/links), we omit the detailed handling of attributes, which could be introduced similarly.

We also permit predicate symbols F ∈ ΣF of arbitrary arity U (F) to represent the results of
model queries.

Additionally, we introduce partial modelling specific concepts: a unary predicate ε denoting
the existence of an object (in a normal model, each object is existing), and a binary predicate ∼
denoting the equivalence of objects (in a normal model, all objects are different from each other).

A metamodel also imposes several structural constraints on instance models to enforce
syntactic consistency for model manipulation or model persistence operations:

1. Type Hierarchy (TH) expresses that a more specific (child) class has every structural feature
of the more general (parent) class;

2. Type Compliance (TC) requires that for any relation R(>, C), its source and target objects >
and C must have compliant types;

3. Abstract (ABS): If a class is defined as abstract, it is not allowed to have direct instances;
4. Multiplicity (MUL) of structural features can be limited with upper and lower bound in the

form of “lower..upper”;
5. Inverse (INV) states that two parallel references of opposite direction always occur in pairs.

15



2. Formalisms for partial models

6. Containment (CON): Instance models in EMF are expected to be arranged into a contain-
ment hierarchy, which is a directed tree along relations marked in the metamodel as
containment (e.g., subsys or payload). The containment hierarchy is particularly relevant
for serialization purposes.

2.1.2 Well-formedness constraints

In many industrial modeling tools, domain-specific WF constraints are defined by error predicates
captured either as OCL invariants [OCL] or as graph patterns [NNZ00; VB07]. A major practical
subclass of such constraints can be formalized using first-order logic with transitive closure
[SV17; SNV18], which can be efficiently evaluated by underlying query engines like [Ujh+15] to
validate models, or formally analyzed by model generators [Sem+17] to synthesize well-formed
models. Later in this chapter, we will extend the logic below for specific modelling use-cases.

Definition 2.2 (Basic syntax of first-order graph predicates) A graph predicatei is de-
fined over a Σ vocabulary of a metamodel and an infinite set of (object) variables {E1, E2, . . .}
using the following grammar rules:

i ::= C(E) | R(E1, E2) type and reference pred.
| E1 ∼ E2 equivalence
| ¬i | i1 ∧ i2 | i1 ∨ i2 logic connectives
| ∃E : i | ∀E : i quantified expression
| F+(E1, E2) transitive closure

Informally, assuming that error patterns i1, . . . , i= are defined for a domain, a model is
consistent (or valid), if it does not satisfy any error predicates i8 (E1, . . . , E<), i.e.

¬∃E1, . . . , E< : i8 (E1, . . . , E<) = ∀E1, . . . , E< : ¬i8 (E1, . . . , E<).

Example 2.2 Error predicates i1, . . . , i8 in the satellite case study capture the following
design rules of interferometry missions.

• A CommElement may only have a single transmitting subsys (the other subsys, if
present, may only receive):

i1(4) B ∃21, 22 : subsys(4, 21) ∧ subsys(4, 22) ∧ 21 ≠ 22
∧
(
∃C : target(21, C)

)
∧
(
∃C : target(22, C)

)
.

• The GroundStation can only receive and may not have outgoing communication links:

i2(6) B ∃2, C : GroundStation(6) ∧ subsys(6, 2) ∧ target(2, C).
• At least two different Spacecrafts must have the interferometry Payload configured:

i3 B ∀B1, B2 : ¬
(
∃? : payload(B1, ?)

)
∨ ¬

(
∃? : payload(B2, ?)

)
∨ B1 = B2.

• All Spacecraft must have a communication path (transitive closure of radio links) to the
GroundStation:

ilink(B1, B2) B ∃21, 22 : subsys(B1, 21) ∧ subsys(B2, 22) ∧ target(2, B2),
i4(B) B Spacecraft(B) ∧

(
∀6 : ¬GroundStation(6) ∨ ¬link+(B, 6)

)
.

• There may be no communication loops, i.e., communication paths from a CommElement
to itself:

i5(4) B link+(4, 4).

16



2. Formalisms for partial models

• CommSubsystems can only communicate if they use the same frequency band:

i6(21, 22) B target(21, 22) ∧ ¬
(
KaComm(21) ∧ KaComm(22)

)
∧ ¬

(
XComm(21) ∧ XComm(22)

)
∧ ¬

(
UHFComm(21) ∧ UHFComm(22)

)
.

• Cube3U satellites can only cross-link (send data to another satellite) using an UHF-
Comm transmitter, but can only communicate with the GroundStation using a XComm
transmitter:

i7(B) B ∃21, 22, 4 : Cube3U(B) ∧ subsys(B, 21) ∧ subsys(4, 22) ∧ target(21, 22)
∧ ¬

(
UHFComm(21) ∧ Spacecraft(4)

)
∧ ¬

(
XComm(21) ∧ GroundStation(4)

)
.

• Only a SmallSat or the GroundStation may be configured with a KaComm subsystem:

i8(4) B
(
∃B : subsys(4, B) ∧ KaComm(B)

)
∧ ¬SmallSat(4) ∧ ¬GroundStation(4).

The error predicate i8 is depicted on the right side of Figure 2.1 as a graph pattern using the
graphical syntax of the GROOVE graph transformation tool [Ren+12].

Since the structural constraints on metamodels can be formalized asWF constraints [Sem+17]
using the graph predicate language of [SV17; SNV18], we can evaluate both kinds of constraints
uniformly with first-order logic. However, as structural constraints are prevalent in modeling
tasks, in the following, we will exploit their special structure, especially that of MUL and CON
constraints, to speed up model generation by numerical reasoning, while retaining full support
for arbitrary WF constraints.

2.1.3 Type scopes

To guide model generation towards more relevant models in a domain, type scopes are frequently
used to specify the number of required elements of each type (class). For example, Alloy [Jac02]
introduces scope bounded analysis for relational specifications. For larger models, prescribing
lower and upper bounds may ensure realistic distribution of types in auto-generated test cases
and benchmarks.

Type scope constraints define lower and upper bounds for the number of instances generated
for a specific class. A lower type scope constraint !8 ≤ C8 and an upper type scope constraint
C8 ≤ *8 respectively assert that there are at least !8 and at most *8 instances of the class C8

(where !8 ,*8 ∈ ℕ). We require that a generated model must satisfy the conjunction of all scope
constraints of a given type.

Test and benchmark generation tasks requiremodels of some finite size=, whereas for proving
the inconsistency of modeling languages, cases up to a small size = are checked according to the
small scope assumption [Jac02]. Therefore, we assume the existence of an upper bound = on
the number of objects in the generated models, which can be seen as a type scope bound on a
common supertype of all types.

Our formulation of type scopes extends the notation of scopes introduced in Alloy [Jac02],
which supports only upper (C8 ≤ *8 ) and exact limits (C8 = �8 ) (but not lower bounds). Alloy also
limits type scopes and type hierarchy. If a type scope is specified for a class C8 , its supertypes
cannot have a type scope. Scopes in Alloy cannot express problems where the sums of (upper)
type scope bounds do not coincide with the number of objects (

∑
8 *8 > =), because the model size

= can only be specified as a type scope bound on the common supertype of all types. Therefore,
these upper scope constraints and all lower scope constraints need to be formulated as additional
constraints instead.

17



2. Formalisms for partial models

 

0 1

½
⇒

<
(- < . ) ⇔ [(- = ½) ∨ (- = . ) ∨ (. =  )]
(- ⇒ . ) ⇔ [(- = 0) ∨ (- = . ) ∨ (. = 1)]

(a) Lattice of logical values

- ¬4-

0 1
1 0
½ ½
  

∨4 0 1 ½  
0 0 1 ½  
1 1 1 1 1
½ ½ 1 ½ 1
  1 1  

∧4 0 1 ½  
0 0 0 0 0
1 0 1 ½  
½ 0 ½ ½ 0
 0  0  

⊕ 0 1 ½  
0 0  0  
1  1 1  
½ 0 1 ½  
     

(b) Logic connectives and information merge

Figure 2.2: Belnap–Dunn 4-valued logic

Example 2.3 Given the constraints 30 ≤ Spacecraft, Spacecraft ≤ 50, and SmallSat ≤ 15
for our running example, generated models may contain between 30 and 50 Spacecrafts.
Moreover, at most 15 of these spacecrafts can be SmallSats.

2.2 4-valued partial models with attributes

2.2.1 Belnap–Dunn 4-valued logic

In this work, we utilize 4-valued logic to explicitly represent unfinished, partial (paracomplete)
models, as well as errors and inconsistencies (paraconsistency) arising during the evaluation of
computations over such models. This section provides semantic foundations for our specification
language based on the inconsistency-tolerant Belnap–Dunn 4-valued logic [Bel77; KO17]. In addi-
tion to reasoning about design decisions yet to be made (i.e., currently unknown outcomes) and
contradiction arising during e.g., model merging, 4-valued logic allows catching runtime errors
caused by undefined arithmetic operations with attributes, such as division by zero [MW12].

Belnap–Dunn 4-valued logic contains the usual false 0 and true 1 truth values, the unknown ½
value introduced for unspecified or unknown properties, and the inconsistent  value that signals
inconsistencies and computation failures. The subset {0, 1,½} of logic values can express partial,
but consistent information. Conversely, the subset {0, 1, } expresses possibly inconsistent, but
complete information.

Two partial orders can be defined over 4-valued logic values (Figure 2.2a). The information
order, denoted by <, expresses the gathering of information as new facts are learned during
the refinement of partial models. Facts with ½ logical value can be set to either 1 or 0, while a
change to  signifies an inconsistency or failure.

The second partial order is the implication order, denoted by ⇒, which serves as a general-
ization of logical implication.

The information merge operator ⊕ merges 4-valued truth values where contradictory infor-
mation results in  . Other operations on 4-valued truth values ¬4, ∨4, and ∧4 are extensions
of the usual logic operators ¬, ∨, and ∧. Their truth tables (see Figure 2.2b) coincide with their
classical counterparts for {0, 1} inputs.

Semantically, ½ truth value represents potential 1 or 0 (or  ) values, and the semantic is
chosen to cover all of those options. On the other hand,  is often unintuitive, but it allows the
precise and explicit localization of inconsistencies within models [Bel77; CNS12]. For example,

18



2. Formalisms for partial models

we may see that if - =  and . = ½, then - ∨4 . = 1, because the only way for our logical
inference to result in a consistent truth value is to eventually learn that . is 1. Should . turn
out to be 0, the inconsistent  value will be propagated.

2.2.2 Interval arithmetic

We use interval arithmetic to represent numerical attribute values, including unfinished or
inconsistent ones. A closed, possibly infinite interval iv ∈ IV ( 2ℕ of integers denotes a set of
possible numerical values. The empty interval ∅ ∈ IV denotes a missing value or a result of
failed computation.

The operators +♯, −♯, ·♯, /♯, ↑♯, Σ♯, min♯ and max♯ refer to the interval arithmetic [Kul09]
versions of the usual + (addition), − (subtraction), · (multiplication), / (division), ↑ (exponentia-
tion), Σ (summation), min andmax operations over integers, respectively. The t symbol denotes
the join (i.e., the smallest interval containing both intervals) of two intervals, while ∩ denotes
interval intersection.

2.2.3 Partial models

In this paper, we introduce the concept of 4-valued partial models as an extension of partial
models proposed in [SNV18]. The goal of partial models is to explicitly represent uncertainty in
models, thus a single partial model represents a set of potential (traditional) instance models.
We combine two techniques to capture uncertainty in a partial model.

First, 4-valued logic is used to explicitly represent uncertain structural properties of models
with the ½ truth value in accordance with [RSW04; Var+18; SV17]. From a formal perspective,
this technique implements predicate abstraction on graph models [FFJ12].

Secondly, numerical information is attached to the partial model to represent attribute values
with interval abstraction. Since intervals are a non-relational abstraction [Min04; JM09], the partial
model does not store any information about the relationships between different attribute values.
This facilitates fast local model querying and reasoning by evaluation numerical constraints
with interval arithmetic. Nevertheless, reasoning over the relationships of attribute values still
remains possible by invoking external solvers [c9; j3].

The fourth  (error) truth value can explicitly mark constraint violations and conflicting
information in models, for example, during model merge [CNS12]. For attribute values, the
empty interval ∅ can be used analogously to signify lack of any valid numerical value.

Definition 2.3 A 4-valued partial model over a metamodel signature 〈Σ, U〉 is a tuple % =

〈O% ,I% ,V% 〉, where

• O% is a finite set of individuals (i.e., objects);
• I% gives a 4-valued interpretation I% (e) : OU (( )

%
→ {1, 0,½, } for each symbol e ∈ Σ;

• V% : O% → IV gives a numeric value interpretation for all individuals.

Informally, the meaning of the structural 4-valued interpretation I% is as follows:

• Node (class) symbols: I% gives a 4-valued interpretation of each class symbol C8 in Σ:
I% (C8) : O% → {1, 0,½, } that describes whether it is true, false, unspecified, or inconsis-
tent if an object is an instance of a class C8 .

• Integer type symbol: I% gives a 4-valued interpretation I% (int) : O% → {1, 0,½, } of int:
I% (int) (G) = 1 and ½ means that G is surely or possibly a data object representing an
integer value, respectively. The rest of the individuals in the model are domain objects.
In EMF terminology, data objects correspond to EInt instances, while domain objects are
EObject instances.

19



2. Formalisms for partial models

• Attribute symbols: I% gives a 4-valued interpretation of each attribute symbol A9 in Σ:
I% (A9 ) : O% × O% → {1, 0,½, }, where I% (A9 ) (G,~) = 1, 0, ½, and  mean that it is true,
false, unknown, or inconsistent whether the value of the A9 attribute of the G domain
objects is represented by the ~ data object. The numeric value interpretation V% (~) gives
the interval of possible integer attribute values that the domain object ~ can represent.

• Predicate symbols: I% gives a 4-valued interpretation of each predicate symbol F9 in Σ:
I% (A9 ) : O% × O% → {1, 0,½, }, where I% (F9 ) (G1, . . . , GU (F9 ) ) = 1, 0, ½, and  mean that it
is true, false, unknown, or inconsistent whether the predicate represented by F9 holds for
the tuple of objects 〈G1, . . . , GU (F9 )〉. Later in this chapter, we will associate a logic formula
i 9 with each predicate symbol F9 . Thus, the interpretation I% (F9 ) (G1, . . . , GU (F9 ) ) can store
the (prescribed) value of the evaluation of the formula i 9 after its free variables are bound
to the objects G1, . . . , GU (F9 ) .

• Existence symbol: I% gives a 4-valued interpretation I% (ε) : O% → {1, 0,½, } of the
existence symbol ε: I% (ε) (G) = 1 and ½ means certain or possible existence of object G .
In particular, I% (ε)G = ½ turns G into an optional object that can be freely included in or
omitted from the model.

• Equality symbol: I% also gives 4-valued interpretation I% (∼) : O% × O% → {1, 0,½, } of
equality symbol ∼: I% (∼)(G,~) = 1, 0, ½, and  mean that it is true, false, unknown, or
inconsistent whether G and~ are equal. In particular, self-loops with I% (∼)(G, G) = ½ turns
G a multi-object that can be split into multiple, non-equal objects to compactly represent a
number of concrete model objects. Conversely, potentially equal objects I% (∼)(G,~) = ½
can be merged into single objects.

In the context of model generation, we restrict the possible combination of those predicates
to exclude inconsistent and irrelevant constructs that are not productive as intermediate states
of model generation. However, such inconsistent constructs can still arise during model merge
operations when there are merge conflicts.

Structural regularity criteria avoid unnecessarily storing nonexistent objects and take care of
the expected properties of object equality ∼.

Definition 2.4 A 4-valued partial model % = 〈O% ,I% ,S% 〉 is structurally regular if

• there are no nonexistent objects, i.e., if > ∈ O% , then I% (ε) (>) ≠ 0;
• ∼ is reflexive, i.e., if > ∈ O% , then I% (∼)(>, >) ≠ 0;
• ∼ is symmetric, i.e., if >1, >2 ∈ O% , then I% (∼)(>1, >2) = I% (∼)(>2, >1); and
• there are no object merges, i.e., if >1, >2 ∈ O% and I% (∼)(>1, >2) ≠ 0, then >1 = >2.

Numerical regularity criteria ensure that attribute values are represented by value objects.

Definition 2.5 A scoped partial model % = 〈O% ,I% ,S% 〉 is numerically regular if

• domain objects have no numerical value, i.e., if > ∈ O% and I% (int) (?) 4 0, then we
have V% (>) = ∅; and

• value objects have at least one possible numerical value, i.e., if > ∈ O% and we have
I% (int) (?) = 1, then V% (>) ≠ ∅.

Definition 2.6 A 4-valued partial model is regular if it is both structurally regular and
numerically regular.

20



2. Formalisms for partial models

2.2.4 Refinement and concretization

We carry out model generation along a sequence of refinement steps that derive new partial
models by increasing their size but gradually reducing the level of uncertainty in each model
while continuously checking (an approximated version of) well-formedness constraints. Thus,
we introduce the formal concept of refinement for 4-valued partial models which simultaneously
refines both the 4-valued logic structure and the numerical attribute values.

Definition 2.7 The relation ref ⊆ O% × O& is a refinement from the 4-valued partial model
% = 〈O% ,I% ,V% 〉 to the scoped partial model & = 〈O& ,I& ,V&〉 over the same signature
〈Σ, U〉, written as % <ref & , if

VR1. no surely existing object disappears, i.e., if ? ∈ O% and I% (ε) (?) 4 1, then there is
some successor @ ∈ O& such that 〈?, @〉 ∈ ref and I% (ε) (?) < I& (ε) (@);

VR2. no possibly existing objects are created from scratch, i.e., if @ ∈ O& and I& (ε) (@) < 1,
then there is some predecessor ? ∈ O% such that 〈?, @〉 ∈ ref and I% (ε) (?) < 1;

VR3. ref obeys the information ordering of 4-valued interpretations, i.e., if e ∈ Σ \ {ε} and
〈?1, @1〉, . . . , 〈?U (e ) , @U (e )〉 ∈ ref , then I% (e) (?1, . . . , ?U (e ) ) < I& (e) (@1, . . . , @U (e ) ); and

VR4. ref obeys the information ordering of numerical value interpretations, i.e., if 〈?, @〉 ∈ ref ,
then V% (?) ⊇ V& (@).

We will write % < & if we have % <ref & for some refinement ref .

If a 4-valued partial model" only contains 1 and 0 logic values and singleton attribute values
(i.e., each attribute value is a single integer), then " represents a traditional (concrete) instance
model. This corresponds to resolving all uncertainties while still having no inconsistency in the
model. We can use concrete partial models to represent completed system architectures where
there are no further design decisions to be made.

Definition 2.8 A regular 4-valued partial model % = 〈O% ,I% ,V% 〉 is concrete if

• I% contains 1 and 0 values only, i.e., for each e ∈ Σ∩ Γ and >1, . . . , >U (e ) ∈ O% , we have
I% (e) (>1, . . . , >U (e ) ) ∈ {1, 0}; and

• each value object has a single possible numerical, i.e., if > ∈ O% and V% (>) = {:} for
some : ∈ ℤ.

Because the refinement of 4-valued partial models is transitive, we may obtain concrete
model" from the initial partial model %0 after a chain of refinements %0 < %1 < · · · < " . Such
a refinement chain will be constructed during model generation or synthesis.

Conversely, in model merge operations, chains of refinements composed of merge functions
will be created to include information from the individual model fragments to be merged, as well
as to ensure that the concrete model obtain after merging satisfies the metamodel constraints.

Proposition 2.9 Refinement of 4-valued partial models is transitive, i.e., if %,&, ' are regular
partial models, % <ref 1 & , and & <ref 2 ', then % <ref 3 ' for some refinement ref 3.

Note that if a partial model contains an inconsistent  logic value or a data object with an
empty ∅ set of represented attribute values, obtaining a concrete model by refinement is only
possible if the affected objects can be removed outright.

2.2.5 Compatibility and inconsistency of partial models

As for logic to define well-formedness constraints and graph predicate, we extend the basic
logical language from Definition 2.2 with numerical expressions over attribute values.

21



2. Formalisms for partial models

The resulting semantics contain not only the evaluation JiK%
/
for logic formulas i , but also

an evaluation L`M%
/
for numerical expressions. Similarly to the storage of information in partial

models, we use 4-valued logic abstraction to encode the results of logic formula evaluation while
relying on interval abstraction for the results of numerical expressions.

Definition 2.10 The semantics JiK%
/
∈ {1, 0,½, } of a logic formula i and L`M%

/
∈ IV of a

numerical expression ` with free variables + = {E1, . . . , E: } over the 4-valued partial model
% = 〈O% ,I% ,V% 〉, the signature 〈Σ, U〉, and the variable binding / : + → O% are inductively
defined as

Je (E1, . . . , EU (e ) )K%/ = I% (e) (/ (E1), . . . , / (EU (e ) )) for all e ∈ Σ \ {ε,∼},
JE1 ∼ E2K%/ = I% (∼)(/ (E1), / (E2)),
J¬i1K%/ = ¬4Ji1K%/ ,

Ji1 ∨ i2K%/ = Ji1K%/ ∨4 Ji2K%/ ,

Ji1 ∧ i2K%/ = Ji1K%/ ∧4 Ji2K%/ ,

J∃E : i1K%/ =
∨4

>∈O%

I% (ε) (>) ∧4 Ji1K%/,E ↦→> ,

J∀E : i1K%/ = ¬4J∃E : ¬i1K%/ ,

Je+(E1, E2)K%/ =

s
e (E1, E2) ∨

| O% |∨
8=1

∃D1 : · · · ∃D8 : e (E1, D1) ∧
8−1∧
9=1
e (D 9 , D 9+1) ∧ e (D8 , E2)

{/

%

for all e ∈ Σ \ {∼} with U (e) = 2,

J` ∈ ivK%/ =

{
1 if L`M%

/
≠ ∅ and L`M%

/
⊆ iv,  if L`M%

/
= ∅,

0 if L`M%
/
≠ ∅ and L`M%

/
∩ iv = ∅, ½ otherwise,

LliteralM%/ = {literal} for all literal ∈ ℕ,

LEM%/ = V% (/ (E)),
L`1 〈op〉 `2M%/ = L`1M%/ 〈op〉♯ L`2M%/ for 〈op〉 = +,−, ·, /, or ↑.

We will use ΦΣ to denote the set of all possible logic formulas over the signature 〈Σ, U〉.
If JiK%

/
4 1, then / is a match of i in % .

The newly added ` ∈ iv operator allows us to check whether the result of a numerical
expression lies in a given interval. This also allows expressions equality (` = :) and inequality
(` ≤ : and ` ≥ :) constraints by setting iv = {:}, (−∞, :], and [:,∞), respectively.

Numerical expressions are formed with the usual +, −, ·, /, and ↑ numerical operators,
which are interpreted in accordance with interval arithmetic rules. They also contain literal
expressions, standing for singleton interval, and references to first-order variables E , standing
for the numerical value V% (>) of the individual > bound to the variable E .

Example 2.4 The logic formula ∀E2 : ¬missionTime(E1, E2) ∧ E1 ∈ [0; 10] evaluates to 1 if
the value of the missionTime attribute of the individual bound to the variable E1 surely lies
between 0 and 10.
Notice that, on a concrete 4-valued model" , the result JiK"

/
of a logic formula is either 1,

0, or  , while the result L`M"
/

of a numerical expression is either a singleton interval {:} for
some : ∈ ℤ, or the empty interval ∅. Empty intervals and  logic values as introduced when
and invalid arithmetic operation (e.g., division by zero) happens according to interval arithmetic
rules, or the result of an invalid operation is compared with another interval.

The semantics of both logic formulas and numerical expressions obey 4-valued partial model

22



2. Formalisms for partial models

refinement. If more information is incorporated into the partial model, the results of expression
evaluation get more precise as well. In particular, refining a partial model might change the
results of formulas from ½ to 1 or 0 and tighten the interval bounds of the results of numerical
expressions.

Lemma 2.11 The semantics of expressions obeys partial model refinement, i.e., if % =

〈O% ,I% ,V% 〉 and & = 〈O& ,I& ,V&〉 are 4-valued partial models over the signature 〈Σ, U〉,
% <ref & for some refinement ref , i is a logic formula (resp. ` is a numerical expression)
with free variables + = {E1, . . . , E: }, / : + → O% and . : + → O& are variable bindings, and
〈/ (E), . (E)〉 ∈ ref for all E ∈ + , then JiK%

/
< JiK&

.
(resp. L`M%

/
⊇ L`M&

.
).

To incorporate the definitions of graph predicates, we define a respective theory (set of
axioms). The theory associates each predicate symbol F9 ∈ ΣF with a logic formula that provides
its meaning. As a convenience feature, the theory can also contain error formulas, so we do not
have to add a fresh predicate symbol F9 for every well-formedness constraint.

Definition 2.12 A theory for the signature 〈Σ, U〉 is a pair T = 〈3, E〉, where

• 3 : ΣF → ΦΣ is the predicate definition function, which assigns a formula 5 (F9 ) with
free variables {E1, . . . , EU (F9 ) } to each predicate symbol F9 ∈ ΣF; and

• E ( ΦΣ is the set of error formulas.

As such, we can focus only on semantic interpretations of partial models which are compatible
with the actual definitions. For example, if a particular logic formula computes a 4-valued value
as a result, then the interpretation of the respective predicate symbol F9 ∈ ΣF stored in the partial
model should actually retrieve the respective value.

Definition 2.13 A 4-valued partial model % = 〈O% ,I% ,V% 〉 over the signature 〈Σ, U〉 is
compatible with the theory T = 〈3, E〉, if

• for all F9 ∈ ΣF and >1, . . . , >U (F9 ) ∈ O% , we have

J3 (F9 )K%E1 ↦→>1,...,EU (F9 ) ↦→>U (F9 )
⊕ I% (F9 ) (>1, . . . , >U (F9 ) ) ≠  ; and

• for all i ∈ E with free variables + = {E1, . . . , E<} and for all valuations / : + → O% ,
we have JiK%

/
< 0.

If some of these constraints are violated, we say that % is inconsistent with the theory T .

Note that error patterns can be substituted with predicate symbols without a loss of expres-
siveness. We may remove the error formula i8 ∈ E from E and instead add a new predicate
symbol F8 to Σ with 3 (F8) = i8 . If i8 has free variables + = {E1, . . . , E<} then we may set
I% (F8) (>1, . . . , >: ) for each >1, . . . , >: ∈ O% to ensure that % is compatible with the modified
theory if and only if it was compatible with the original one.

2.2.6 Model generation problems

The generation of consistent (concrete) models is driven by a series of refinement and con-
cretization steps where the level of uncertainty in partial models is gradually reduced. When all
uncertainties are resolved and there is still no inconsistency in the model then a concrete model
is obtained.

Next, we formally define the task of (consistent) model generation along partial models. Given
a model generation task, a complete model generator outputs some model & ∈ solutions(%,) ) if

23



2. Formalisms for partial models

solutions(%,) ) is non-empty. Otherwise, it provides a proof of the unsatisfiability of the task.

Definition 2.14 Given a 4-valued partial model % = 〈O% ,I% ,V% 〉 over the signature 〈Σ, U〉
and a theory T = 〈3, E〉 over the same signature, the solutions of the corresponding model
generation problem,

solutions(%,T) = {" | % < "," is compatible with T },

are the concrete refinements of % that are compatible with T .

If a partial model % is inconsistent, then its refinements& (% < &) cannot be concrete. Hence,
when searching for a concrete, consistent refinement of % , model generators can abandon incon-
sistent partial models & without compromising the completeness of model generation [SNV18].

2.3 Scoped partial models

We introduce the concept of 3-valued scoped partial models as an extension of partial models
proposed in [SNV18] to precisely keep track of the size of the partial model and the number of
represented graph predicate matches. This allows reasoning about scope constraints and linear
cost functions (computed as a linear combination of predicate match counts) efficiently.

Firstly, use 3-valued logic is used to explicitly represent uncertain structural properties of
models with a third ½ (unspecified or unknown) truth value (besides 1 and 0, which stand for
true and false) in accordance with [RSW04; Var+18; SV17]. This is a subset of the 4-valued logic
used in Section 2.2 with the inconsistent  logic value removed.

Secondly, quantitative information is attached to the partial model in the form of a system of
linear inequalities to precisely represent the known (or required) size of the models and predicate
match sets. Later, we use partial models as states of model generation to represent intermediate
solutions with uncertain parts denoted with truth-value ½ and its size. The resulting polyhedron
abstraction [BHZ08] can express relationships between arbitrary linear combinations of match
set sizes, i.e., it is a fully relational abstract domain [JM09]. We exploit this property to efficiently
reason about type scope constraints over type hierarchies, which is a feature not supported by
the type scopes implemented in Alloy [Jac02].

2.3.1 Systems of linear inequalities and linear programs

First, we review some notations for systems of linear inequalities and ILP problems that will be
used in this work.

Definition 2.15 Let X = {x1, . . . , x |X |} be a finite set of linear equation variables. Then

S =
{∑

x9 ∈X 08, 9 · x9 ≤ ~8
} |S |
8=1 is a system of linear inequalities on X.

While Definition 2.15 only considers linear constraints with the ≤ operator. We will occasion-
ally use constraints also with the ≥ and = operators, which can be transformed into ≤ constraints
in a straightforward manner by rearranging (and, in the case of = constraints, splitting into two
separate inequality constraints).

Definition 2.16 Let functions : : X → ℕ be valuations. A valuation : is a solution of S
(written as : � S) if

∑
x9 ∈X 08, 9 · : (x9 ) ≤ ~8 for all inequalities

∑
x9 ∈X 08, 9 · x9 ≤ ~8 in S. The

system of linear equations S1 entails S2 (written as S1 � S2) if, for any solution : � S1, we
also have : � S2.

24



2. Formalisms for partial models

Note that we restrict our attention to nonnegative valuations (i.e., the value : (x) of each
linear equation variable x ∈ X is a natural number), since we will use linear equation variables
to represent model size and the number of graph predicate matches only.

Definition 2.17 An integer linear program (ILP) is of the form max
∑

x8 ∈X 28 · x8 subject to S,
where S is a system of linear equations.

While ILPwith bothmaximization (max) andminimization (min) objectives can be considered,
we restrict our attention to max objectives w.l.o.g., since any min objective can be transformed
into a max objective after multiplication by −1.
Definition 2.18 Let 6(:) = ∑

x8 ∈X 28 · : (x8) denote the cost of valuation : . The valuation
:∗ is an optimal solution of the ILP if :∗ � S and 6(:∗) ≥ 6(:) for all : � S, i.e., its cost is
maximal.

2.3.2 Scoped signatures and partial models

We define scoped signatures that specify a subset ΓC ] ΓR ] ΓF ( Σ of class, reference, and
predicate symbols that are subject to fully relational abstraction. The distinction between Σ
and Γ allows us to selectively apply polyhedron abstraction using linear inequalities to only a
subset of the relations in the model. This enables powerful abstraction for logical symbols where
the added precision can greatly aid in model analysis and generation, while we can avoid the
maintenance of linear constraints for logical symbols where they do not improve the precision
of the abstraction or pose too large of an overhead.

For the sake of brevity, we omit the handling of attribute symbols A9 and the integer type
symbol int. Therefore, in a scoped partial model, all objects are domain objects.

However, to enable the tracking of arbitrary linear inequalities alongside the scope partial
model, we introduce numerically tracked symbols Σ ∌ X9 ∈ ΓX that are only considered by
polyhedron abstraction and not by 3-valued logic abstraction.

Definition 2.19 (Scoped signature) A scoped signature is a tuple 〈Σ, Γ, U〉, where

• Σ = {ε,∼} ] ΣC ] ΣR ] ΣF is the set of logical symbols;
• Γ = {ε} ] ΓC ] ΓR ] ΓF ] ΓX is the set of numerical symbols;
• U : Σ ] ΓX → ℕ is the arity function;
• ε is the object existence symbol with U (ε) = 1;
• ∼ is the object equality symbol with U (∼) = 2;
• ΣC = {C1, . . . ,C2 } is the set of class symbols with U (C8) = 1 for each C8 ∈ ΣC;
• ΣR = {R1, . . . ,RA } is the set of reference symbols with U (R8) = 2 for each R8 ∈ ΣR;
• ΣF = {F1, . . . , F5 } is the set of predicate symbols;
• ΓC ⊆ ΣC, ΓR ⊆ ΣR, and ΓF ⊆ ΣF are the sets of numerically tracked class, relation, and
predicate symbols, respectively; and

• ΓX = {X1, . . . , XG } is the set of auxiliary variable symbols.

Scoped partial models provide a system of linear inequalities S% alongside the 3-valued logic
interpretation I% . Compared to Definition 2.3, we omit the numeric value interpretation V% ,
since we only consider domain objects as part of the model.

Definition 2.20 (Scoped partial model) A scoped partial model over a signature 〈Σ, Γ, U〉
is a tuple % = 〈O% ,I% ,S% 〉, where

• O% is a finite set of individuals (i.e., objects);
• I% gives a 3-valued interpretation I% (e) : OU (( )

%
→ {1, 0,½} for each symbol e ∈ Σ; and

25



2. Formalisms for partial models

• S% is a system of linear inequalities over the linear inequality variables X% =

{Ŵ (>1, . . . , >U (W ) ) | W ∈ Γ, >1, . . . , >U (W ) ∈ O% }.

For any symbol e ∈ Σ ∩ Γ, we can consider ê (>1, . . . , >U (f ) ) as the linear inequality variable
corresponding to the number of e relationships represented by the individuals 〈>1, . . . , >U (f )〉 in
the partial model as follows:

• For each class symbol C ∈ Σ and individual > ∈ O% , the variable Ĉ(>) corresponds to the
number of objects of type C represented by > .

• Likewise, for each reference symbol R ∈ Σ and objects >1, >2 ∈ O% , the variable R̂(>1, >2)
corresponds to the number of links of type R from objects represented by >1 to objects
represented by >2.

• For :-ary predicate symbol F ∈ Σ (i.e., U (F) = :) and objects >1, . . . , >: ∈ O% , the variable
F̂(>1, . . . , >: ) corresponds to the number of matches of the predicate F where the 8th
argument of the match is represented by the individual >8 for each 8 = 1, . . . , : .

• Lastly, we interpret the variables ε̂(>) associated with the existence symbol ε as the number
of objects represented by the individual > .

• Because the 3-valued interpretation I% (∼) of the equality symbol ∼ governs the merging
and splitting of partial model individuals, it already involved in determining the number of
objects represented in a partial model. Thus, we refrain from providing a linear inequality
variable interpretation ∼̂ for it by ensuring that ∼ ∉ Γ.

Auxiliary symbols X ∈ ΓX give rise to linear equation variables with no corresponding logical
relations in the model. Nevertheless, they are still associated with a tuple 〈>1, . . . , >U (W )〉 of
objects which help in identifying the variable during model refinement. Auxiliary variables with
U (W) = 0 are global variables, which remain unaffected by refinement.

For 0-ary logical symbols e ∈ Σ (i.e., U (e) = 0), we will write I% (e) instead of I% (e) ().
Likewise, for W ∈ Γ with U (W) = 0, we will write Ŵ instead of Ŵ (). Thus, 0-ary auxiliary variable
symbols give rise to named global linear equation variables in S% . We will use the notation
>̂ = ε̂(>) to refer to the linear inequality variable corresponding to the number of concrete model
objects represented by the individual > ∈ O% .

In the context of model generation, we restrict the possible combination of those predicates
to exclude inconsistent and irrelevant constructs that are not productive as intermediate states
of model generation.

Definition 2.21 A scoped partial model % = 〈O% ,I% ,S% 〉 is structurally regular if

• there are no nonexistent objects, i.e., if > ∈ O% , then I% (ε) (>) ≠ 0; and
• there are no object merges, i.e., if >1, >2 ∈ O% and I% (∼)(>1, >2) ≠ 0, then >1 = >2.

The numerical regularity criteria of scoped partial models ensures consistency of the 3-valued
interpretation I% and the scopes S% .

Definition 2.22 A scoped partial model % = 〈O% ,I% ,S% 〉 is numerically regular if

• S% is satisfiable;
• surely false relationships represent exactly 0 instances of the relationship, i.e., for each
e ∈ Σ ∩ Γ and >1, . . . , >U (e ) ∈ O% ,

I% (e) (>1, . . . , >U (e ) ) = 0 =⇒ S% � ê (>1, . . . , >U (( ) ) = 0.

• surely existing individuals must represent at least one object, i.e., for each > ∈ O% ,

I% (ε) (>) = 1 =⇒ S% � >̂

26



2. Formalisms for partial models

Table 2.1: Explanation for existence and self-equivalence predicates

ε(G) G ∼ G Description Symbol Regularity criteria

1 1 concrete object [1..1] S% � Ĝ = 1

½ 1 uncertain, concrete [0..1] S% � Ĝ ≤ 1

1 ½ multi-object [1..∗] S% � Ĝ ≥ 1

½ ½ uncertain, multi [0..∗] unrestricted

• individuals that are surely equal to themselves cannot represent multiple objects,
because they cannot be split further, i.e., for each > ∈ O% ,

I% (∼)(>, >) = 1 =⇒ S% � >̂ ≤ 1.

Table 2.1 summarizes the possible cases of uncertain existence and self-equivalence permitted
by Definition 2.22. Individuals that may represent multiple concrete model objects are multi-
objects, while individuals with uncertain existence are uncertain elements of the partial model.

In contrast with 4-valued partial models, for the most part, we will restrict our attention to
scoped partial models that are both structurally and numerically regular.

Definition 2.23 A scoped partial model is regular if it is both structurally regular and
numerically regular.

2.3.3 Refinement and concretization

Analogously to 4-valued partial model refinement in Definition 2.7, we introduce the refinement
of scoped partial models to gradually incorporate information into the models.

Definition 2.24 The relation ref ⊆ O% × O& is a refinement from the scoped partial model
% = 〈O% ,I% ,S% 〉 to the scoped partial model & = 〈O& ,I& ,S&〉 over the same signature
〈Σ, Γ, U〉, written as % <ref & , if

SR1. no surely existing object disappears, i.e., if ? ∈ O% and I% (ε) (?) = 1, then there is
some successor @ ∈ O& such that 〈?, @〉 ∈ ref and I% (ε) (?) < I& (ε) (@);

SR2. no possibly existing objects are created from scratch, i.e., if @ ∈ O& and I& (ε) (@) ≠ 0,
then there is some predecessor ? ∈ O% such that 〈?, @〉 ∈ ref and I% (ε) (?) ≠ 0;

SR3. ref obeys the information ordering of 3-valued interpretations, i.e., if e ∈ Σ \ {ε} and
〈?1, @1〉, . . . , 〈?U (e ) , @U (e )〉 ∈ ref , then I% (e) (?1, . . . , ?U (e ) ) < I& (e) (@1, . . . , @U (e ) ); and

SR4. S& refines the numerical information in S% , i.e., S& � S% [ref ], where S% [ref ] is
obtained from S% by replacing the occurrences of all variables Ŵ (?1, . . . , ?U (W ) ) with
the sums

∑
〈?1,@1 〉,...,〈?U (W ) ,@U (W ) 〉∈ref Ŵ (@1, . . . , @U (W ) ).

We will write % < & if we have % <ref & for some refinement ref .

In a concrete scoped partial model % = 〈O% ,I% ,S% 〉 (i.e., a scoped instance model), the system
of linear inequalities S% must reflect the number of relationship instances corresponding to
tuples of objects surely belonging to classes, references, and predicate symbols in % . Therefore,
: (ê) (>1, . . . , >U (e ) ) is entirely determined by I% (e) (>1, . . . , >U (e ) ) for all e ∈ Σ∩ Γ, >1, . . . , >U (e ) ∈
O% , and bindings : : X% → ℕ that satisfy : � S% . However, for an auxiliary variable symbol
X ∈ ΓX, satisfying bindings : might have (depending on the constraints in S% ) many possible
values of X̂(>1, . . . , >U (X) ).

27



2. Formalisms for partial models

Definition 2.25 A regular scoped partial model % = 〈O% ,I% ,S% 〉 is concrete if

• I% contains 1 and 0 values only, i.e., for each e ∈ Σ∩ Γ and >1, . . . , >U (e ) ∈ O% , we have
I% (e) (>1, . . . , >U (e ) ) ∈ {1, 0}; and

• the linear inequality interpretation S% coincides with the 3-valued interpretation I% ,
i.e., for each e ∈ Σ and >1, . . . , >U (e ) ∈ O% ,

I% (e) (>1, . . . , >U (e ) ) = 1 =⇒ S% � ê (>1, . . . , >U (e ) ) = 1,

I% (e) (>1, . . . , >U (e ) ) = 0 =⇒ S% � ê (>1, . . . , >U (e ) ) = 0.

Unlike Proposition 2.9, we can only prove transitivity of scoped partial model refinement
form regular models. This does not become a limitation in practice, because model generation
can proceed through a chain of regular model refinements %0 < %1 < · · · < " (i.e., %0, %1, . . . , "
are all regular) to obtain some concrete model" .

Proposition 2.26 Refinement of regular scoped partial models is transitive, i.e., if %,&, '
are regular partial models, % <ref 1 & , and & <ref 2 ', then % <ref 3 ' for some refinement ref 3.

2.3.4 Scope constraints

Let the count aggregation #[W (Ē1, . . . , ĒU (e ) )]%/ denote the number of W ∈ Γ relationships in the
scoped partial model % that match the mask Ē1, . . . , ĒU (e ) . Each Ē8 is either a variable E 9 or a
wildcard ∗. In the former case, we are counting W tuples where the 8th element is the individual
/ (E8) ∈ O% bound to the variable E8 . In the latter case, no restrictions are placed on the counted
tuples.

The result of evaluating #[W (Ē1, . . . , ĒU (e ) )]%/ is not a concrete number, but a linear combina-
tion

∑
x8 ∈X%

28 · x8 of linear inequality variables. Therefore, such expressions cannot be used in
computations directly, but only in linear inequalities.

Example 2.5 The expression #[target(E1, E2)]%/ refers to the number of target references
represented in the partial model % between the objects / (E1) and / (E2). It may be the case
S% � #[target(E1, E2)]%/ ≥ 2 if at least one of / (E1) and / (E2) are multi-objects, which can
be split to obtain multiple target links. In particular, the expression #[ε(E1)]%/ refers to the
number of objects represented by the multi-object / (E1).
The expression #[target(E1, ∗)]%/ refers to the number of target links starting from / (E1),
while #[target(∗, ∗)]%

/
refers to the number of target represented in % overall. Similarly,

#[SmallSat(∗)]%
/
refers to the number of SmallSat instances represented in the model.

As a special case, in any valuation : � S" associated with a concrete model" , Definition 2.25
ensures that #[W (Ē1, . . . , ĒU (e ) )]%/ =

∑
x8 ∈X%

28 · x8 evaluated to a single quantity # =
∑

x8 ∈X%
28 ·

: (x8) that depends only on " but not : . The quantity # is precisely the number of W links
present in the model that match the mask Ē1, . . . , ĒU (e ) , since concrete models may contain no
multi-objects.

Definition 2.27 Let % = 〈O% ,I% ,S% 〉 be a scoped partial model over the signature Σ, Γ, U ,
let+ = {E1, . . . , E<} be a finite set of variables, and let / : + → O% be a variable binding. The
function resolve%/ : (+ ∪ {∗})= → 2O

=
% is defined as

resolve%/ (Ē1, . . . , Ē=) = {〈>1, . . . , >=〉 ∈ O=
% | Ē8 = ∗ or >8 = / (Ē8) for all 8 = 1, . . . , =},

If W ∈ Γ, we define #[W (Ē1, . . . , ĒU (e ) )]%/ =
∑

〈>1,...,>U (e ) 〉∈resolve%/ (Ē1,...,ĒU (e ) ) Ŵ (>1, . . . , >U (e ) ) as
the linear combination of linear inequality variables corresponding to the number of W

28



2. Formalisms for partial models

relationships in % that match the mask 〈Ē1, . . . , ĒU (e )〉 under the variable binding / . We say
that the mask 〈Ē1, . . . , Ē=〉 is / -focused if Ē8 = ∗ or I% (∼)(/ (Ē8), / (Ē8)) = 1 for all 8 = 1, . . . , =.

Linear inequalities formed by count aggregations are preserved under the refinement of
regular scoped partial models. In particular, this allows us to add such constraints to the linear
inequalities S% associated with a partial model % while making sure that they will hold for any
concrete model" 4 % obtained by refinement.

Masks which are focused, i.e., where none of the objects bound to the variables can be split
during refinement, are of interest because they represent accurate lower bounds in addition to
accurate upper bounds.

Lemma 2.28 If % = 〈O% ,I% ,S% 〉 and & = 〈O& ,I& ,S&〉 are regular scoped partial models
over the signature 〈Σ, Γ, U〉, % <ref & for some refinement ref , + = {E1, . . . , E<} is a set of
variables, / : + → O% and . : + → O& are variable bindings, 〈/ (E), . (E)〉 ∈ ref for all
E ∈ + , and W, X ∈ Γ, then

a. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ * , then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ * .
b. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ !, and 〈Ē1, . . . , ĒU (W )〉 is / -focused,

then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≥ !; and
c. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ #[X (Ē ′1, . . . , Ē ′U (X ) )]

%
/
, and 〈Ē ′1, . . . , Ē ′U (X )〉 is / -focused,

then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ #[X (Ē ′1, . . . , Ē ′U (X ) )]
&

.
.

2.3.5 Compatibility and inconsistency of scoped partial models

As for logic to define well-formedness constraints and graph predicate, we extend the basic
logical language from Definition 2.2 with numerical expressions over count aggregations.

The resulting semantics describe the evaluation JiK%
/

for logic formulas i according to
3-valued logic abstraction. Compared to Definition 2.10, we do not add a dedicated evaluation
operator for numerical expressions. Instead, we introduce the operators countW (Ē1, . . . , ĒU (W ) ) ≤
* and countW (Ē1, . . . , ĒU (W ) ) ≥ ! directly into the syntax of logic expressions.

Definition 2.29 The semantics JiK%
/
of a logic formulai with free variables+ = {E1, . . . , E: }

over the regular scoped partial model % = 〈O% ,I% ,S% 〉, the signature 〈Σ, Γ, U〉, and the
variable binding / : + → O% is inductively defined as

Je (E1, . . . , EU (e ) )K%/ = I% (e) (/ (E1), . . . , / (EU (e ) )) for all e ∈ Σ \ {ε,∼},
JE1 ∼ E2K%/ = I% (∼)(/ (E1), / (E2)),
J¬i1K%/ = ¬3Ji1K%/ ,

Ji1 ∨ i2K%/ = Ji1K%/ ∨3 Ji2K%/ ,

Ji1 ∧ i2K%/ = Ji1K%/ ∧3 Ji2K%/ ,

J∃E : i1K%/ =
∨3

>∈O%

I% (ε) (>) ∧3 Ji1K%/,E ↦→> ,

J∀E : i1K%/ = ¬3J∃E : ¬i1K%/ ,

29



2. Formalisms for partial models

Je+(E1, E2)K%/ =

s
e (E1, E2) ∨

| O% |∨
8=1

∃D1 : · · · ∃D8 :

e (E1, D1) ∧
8−1∧
9=1
e (D 9 , D 9+1) ∧ e (D8 , E2)

{/

%

for all e ∈ Σ \ {∼} with U (e) = 2,

JcountW (Ē1, . . . , ĒU (W ) ) ≤ * K%/ =


1 if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ * ,
0 if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ * + 1,

and 〈Ē1, . . . , ĒU (W )〉 is / -focused,
½ otherwise,

JcountW (Ē1, . . . , ĒU (W ) ) ≥ !K%/ =


1 if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ !

and 〈Ē1, . . . , ĒU (W )〉 is / -focused,
0 if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ ! − 1,

½ otherwise.

We will use ΦΣ,Γ to denote the set of all possible logic formulas over the signature 〈Σ, Γ, U〉.

The evaluation of logic expressions w.r.t. the inclusion of new information into scoped partial
models by refinement is only monotonic for regular scoped partial models. Therefore, we must
take care during model generation to only process regular models when pruning the search
space according to the 3-valued logic evaluation of logical expressions.

Lemma 2.30 The semantics of expressions obeys partial model refinement, i.e., if % =

〈O% ,I% ,S% 〉 and & = 〈O& ,I& ,S&〉 are regular scoped partial models over the scoped sig-
nature 〈Σ, Γ, U〉, % <ref & for some refinement ref , i is a logic formula with free variables
+ = {E1, . . . , E: }, / : + → O% and . : + → O& are variable bindings, and 〈/ (E), . (E)〉 ∈ ref

for all E ∈ + , then JiK%
/
< JiK&

.
.

We may define theories and compatibility for scoped partial models analogously to Defini-
tions 2.12 and 2.13 for 4-valued partial models.

Definition 2.31 A theory for the scoped signature 〈Σ, Γ, U〉 is a pair T = 〈3, E〉, where

• 3 : ΣF → ΦΣ,Γ is the predicate definition function, which assigns a formula 5 (F9 ) with
free variables {E1, . . . , EU (F9 ) } to each predicate symbol F9 ∈ ΣF; and

• E ( ΦΣ,Γ is the set of error formulas.

When checking for compatibility, we may omit the case for the  logic values, since scoped
partial models cannot be paraconsistent.

Definition 2.32 A 4-valued partial model % = 〈O% ,I% ,V% 〉 over the scoped signature
〈Σ, Γ, U〉 is compatible with the theory T = 〈3, E〉, if

• for all F9 ∈ ΣF and >1, . . . , >U (F9 ) ∈ O% , we have

J3 (F9 )K%E1 ↦→>1,...,EU (F9 )
< I% (F9 ) (>1, . . . , >U (F9 ) ); and

• for all i ∈ E with free variables + = {E1, . . . , E<} and for all valuations / : + → O% ,
we have JiK%

/
< 0.

If some of these constraints are violated, we say that % is inconsistent with the theory T .

30



2. Formalisms for partial models

2.3.6 Model generation and optimization problems

We may define scoped model generation problems analogously to Definition 2.14 in the case of
4-valued partial models.

Definition 2.33 Given a scoped partial model % = 〈O% ,I% ,S% 〉 over the scoped signature
〈Σ, Γ, U〉 and a theory T = 〈3, E〉 over the same signature, the solutions of the corresponding
model generation problem,

solutions(%,T) = {" | % < "," is compatible with T },

are the concrete refinements of % that are compatible with T .

In the model generation problem, the well-formedness constraints of the domain are encoded
in the theory T , while the system of linear equations S% associated with the initial partial model
% may encode any desired type scope constraints.

The additional numerical information present in the system of linear equations S% associated
with scoped partial models allows us to consider model optimization problems, where a given
numerically tracked symbol X∗ ∈ ΓX serves are the objective function. In the following, we define
maximization problems, but minimization problems can be defined analogously.

Definition 2.34 The cost of the scoped partial model % = 〈O% ,I% ,S% 〉 over the scoped
signature 〈Σ, Γ, U〉 with respect to the numerically tracked symbol X∗ ∈ ΓX, where U (X∗) = 0,
is the solution of the ILP costX∗ (%) = max:�S%

: (X̂∗).

Since Σ ∌ X∗ ∈ ΓX, : (X∗) can have many distinct values for different : � S% even if % is
consistent. Due to Condition SR4, we have costX∗ (%) ≥ costX∗ (&) for regular models % and
& whenever % < & . The inequality can be strict, i.e., costX∗ (%) > costX∗ (&) if the refinement
discards possible solution S% from S& .

Now we are ready to define the model optimization problem.

Definition 2.35 The model optimization problem with the initial scoped partial model % =

〈O% ,I% ,S% 〉 over the scoped signature 〈Σ, Γ, U〉, the theory T , and the cost symbol X∗ ∈ ΓX,
where U (X∗) = 0, which is written as

maxX∗ subject to 〈%,T〉,

has the set of optimal solutions

optimal(%,T , X∗) = {" ∈ solutions(%,T) | costX∗ (") ≥ costX∗ (" ′)
for all" ′ ∈ solutions(%,T)}.

2.4 Related work

The Meta-Object Facility (MOF) [MOF] is a conceptual core for model-driven engineering stan-
dardized by the Object Management Group. It is widely used in the specification general-purpose
modeling languages, such as the Unified Modeling Langauge (UML) [UML]. The Eclipse Modeling
Framework (EMF) [Ste+09] relies on Ecore, an implementation of the Essential MOF (EMOF)
fragment of MOF as a technical foundation for metamodeling and model interchange.

The majority of industrial modeling toolchains rely on either MOF, UML, or EMF to capture
models, as well as the associated Object Constraint Language (OCL) [OCL] for model querying
and expressing well-formedness constraints. EMF and OCL supports a wide variety of user

31



2. Formalisms for partial models

defined and built-in data types [OCL, Section A.2] for numerical attributes. OCL is at least as
expressive as first-order logic; it has been translated to first-order logic [BKS02; Soe+10; Sem+17]
and CSP [CCR07; Gon+12].

However, MOF-based approaches lack native support of unknown aspects of models (para-
completeness) and inconsistency-tolerance (paraconsistency). Even though all types in OCL have
a special bottom (⊥) value, and all types except OclInvalid have a special null (ε) value, these
are unsuitable for paracomplete or paraconsistent modeling. The behavior of null corresponds
to the absence of any value instead of the potential for some (yet to be specified value) [OCL,
Section A.2.1.3]. Likewise, bottom is always propagated on error and thus cannot be used
indicate the root cause of an error.

To alleviate this issue, standardized models may be extended with annotations, such as
MAVO (May/Abstract/Variable/Open world) [Sal+15] for incompleteness or merge conflict anno-
tations [SE06; CNS12] for inconsistency. Reasoning with such models has to take annotations
into account, which can increase computational overhead considerably [SV17; WA21].

Alternatively, flexible modeling frameworks were developed [HS17], e.g. Muddle [Kol+13],
FlexiMeta [Hil16], and JSMF [SB16], which may support different phases of flexibility (i.e., less
information may be present in the model during early stages of development) and level of
conformance (i.e., some constraints may be omitted for some instance models). However, they
do not offer reasoning capabilities over unknown aspects or inconsistencies.

Fluid [VP03; Mez+19] and multi-level metamodeling [AK01] aim to support the gradual
construction of models and solve challanges of expressiveness [DGC14] by relaxing the strict hi-
erarchy between metamodels and models. Potency-based [Küh18] systems, e.g., DeepJava [KS07],
MetaDepth [LG10], and Melanee [AG16], allow the definition of an arbitrary number of met-
alevels, while level-blind systems, e.g., DeepTelos [JN16] and VMTS [UTM18], do not impose
levels as restriction on instantiation relations between clabjects (i.e., concepts with both a classifier
and an object facet).

Inheritance between classifiers and instantiation between classifiers and objects are refine-
ment relationships [TM15; Mez+19] between clabjects of a multi-level model. As a key difference
from partial modelling, where refinement occurs between (partial) models, such refinement
relationship occur within a (multi-level) model between modeled concepts. Thus, partial model
based analysis remains applicable to changes (i.e., chains of refinements) to a model during
analysis, while multi-level refinement can only be used to analyze concepts of a single model.

Feature models [Sch+07] as especially prevalent in software product line engineering and the
specification of potential design decisions in variant-rich and reconfigurable systems. Automated
analysis is available for the instantiation and consistency analysis of feature model [BSC10].
The analysis of real-world feature models is often easy, because they only contain few difficult
logical constraints [MWC09; Lia+15]. Clafer [Bak+13] unifies feature models and class diagrams
for additional expressive power. However, sound and complete analysis is only available for a
subset of the language [Wec+18]. Similarly to scoped partial models, the analysis in [Wec+18]
also relies on linear programming to bound the size of potential instance models.

Ontological approaches, e.g., theOntological Modeling Language [Wag+22] fromNASA JPL, as
well as KerML and SysML v2 [SysML2] from OMG, are gaining popularity in systems engineering.
Partial information about the system design can be incorporated into an ontological knowledge
base thanks to the open world assumption. The specification of well-formedness constraints
using description Logics (see, e.g., [KSH12] for an introduction) allows the use of efficient decision
procedures for reasoning about uncertainty and consistency of models, albeit at a reduced
expressive power compared to full First-Order Logic.

Object Role Modeling (see, e.g., [Hal18]) approach to ontology modeling [Spy05] provides a
facility for inconsistency-tolerance: while alethic (necessary) constraints must be satisfied at all
times, deontic (obligatory) constraints may be violated by the knowledge base.

32



2. Formalisms for partial models

2.5 Conclusions

In this chapter, we proposed two extensions to the partial modeling [RSW04; Ren06; Var+18]
formalism to support the extra-functional analysis of complex system architecture models.

The first proposed extension, 4-valued partial models [c7; j2] incorporate 4-valued Belnap–
Dunn logic [Bel77; KO17] to describe paraconsistent (inconsistency-tolerant) models in addition
to the paracomplete (uncertain) aspects supported by existing partial modeling techniques. We
also integrated interval abstraction [Min04; Kul09; JM09] to support abstraction over quantitative
attribute values of model elements. Chapter 3 provides reasoning capabilities for 4-valued partial
models, which are subsequently exploited in Chapter 5 to construct Phased-Mission stochastic
analysis models for reconfigurable systems.

The second proposed extension, scoped partial models [j1] incorporate polyhedron abstrac-
tion [CH78; BHZ08] to support model size and multiplicity constraints in partial models. Chap-
ter 4 provides reasoning capabilities for scoped partial models, which significantly improve the
scalability of graph model generation.

We defined model generation [j1] problems for both extended formalisms and model opti-
mization [j5] for scoped partial models. Chapters 4 and 6 rely on such problems to enable the
synthesis of interferometry mission architecture models and test inputs for industrial modeling
tools, as well as witness models [j5] for WCET analysis, respectively.

33





Chapter3
Fully compositional view

transformations

Complex industrial toolchains used for designing cyber-physical systems frequently depend on
various models on different levels of abstraction. Abstract models [Bru+17] can be derived and
synchronized by view model transformations upon changes of one or more underlying source
models.

View synchronization challenges are addressed by using either general purpose model trans-
formation tools (e.g. ATL [Jou+08; MTD17], ETL [KPP], Henshin [Are+10], Viatra [Var+16]),
bidirectional model synchronization (e.g. various TGG tools [Sch95; Lau+12; GHL14; GK07] and
QVTr [QVT]), or dedicated view transformation techniques (e.g. View TGGs [JKS06; Anj+14],
Active Operations [Bea+10], Viatra Views [Deb+14], QuEST [GDM14]).

To tackle complex scenarios, view model transformations are desirably defined in a com-
positional way to reuse existing transformations without further changes. While sequential
composition (chaining) is widely supported, existing tools need to impose major restrictions in
case of parallel composition (merging) of target views. An ideal (forward only) view transfor-
mation engine is reactive (i.e. reacts to source model changes), target incremental (i.e. updates
only affected target elements), consistent (i.e. continuously maintains a transformation relation
between source and target models) and validating (i.e. the target model is a valid, materializable
instance of the target language).

Currently, there is a significant trade-off in existing tools between the expressiveness and
compositionality of the view transformation language, and the level of support for desirable
features of the view transformation engine. On the one hand, fully reactive behavior is a chal-
lenge in itself supported by only few tools (e.g. [Var+16; Bea+10; MTD17]), while incrementality,
consistency and validity is provided at the same time for very restrictive transformation lan-
guages. Practical model transformation engines frequently fail to restore consistency between
models [Ste14].

Our main contribution in this chapter is a unidirectional view transformation approach with
a (1) a fully compositional view transformation language, and (2) a reactive, incremental, validating
and inconsistency-tolerant transformation engine. The view transformation language explicitly
reuses the Viatra Query Language [Ujh+15] to declaratively capture relevant source and view
patterns by following the principles of ramification [Küh+10]. Moreover, inconsistency-tolerant
partial models (a generalization of partial models of [FSC12; Var+18]) provide the conceptual
core of the transformation engine.

The transformation engine reacts to aggregated changes of the source model observed in
the result set of graph queries (hence reactive), then it builds and maintains a partial model as a
knowledge base with traceability links. Once the partial view model becomes a valid instance of

35



3. Fully compositional view transformations

the target metamodel (i.e. relevant aggregated changes are observed in the knowledge base, and
structural constraints are respected), the target view model is incrementally updated by providing
a corresponding change (e.g. model delta, notification or API call). Our engine is inconsistency
tolerant in the sense that inconsistencies are semantically persisted in the internal knowledge
base. This allows to keep a large fragment of the source and view models in sync in case of
inconsistent source changes and provides hippocratic behavior (i.e. avoids the unnecessary
deletion and recreation of elements).

The transformation engine is implemented as a prototype tool1 and integrated into the
open source Viatra transformation framework [Ber+15]. Moreover, we carry out an initial
scalability evaluation by adapting an existing view model transformation from an industrial
research project (aiming to carry out dependability evaluation of automotive designs) to the
open Train Benchmark [Szá+17]. Artifacts related to this chapter are also available in [d21].

The contents of this chapter are based on the conference paper [c7].

3.1 An overview of compositional view transformations

A view transformation Trg = CA (Src1, . . . , Src: ) aims to derive a target view model Trg as an
abstraction of a set of source models Src1, . . . , Src: . A tr is a mapping from source(s) to target
models typically with loss of information.

Moreover, in a typical view synchronization scenario, each target change is causally depen-
dent on some (aggregate) change of the source model (e.g. a model delta or notification upon
model update). This causal dependence can be captured by a match of a view transformation
rule in the source model which triggers the simultaneous creation of respective target elements
together with some traceability links between source and target elements.

Amotivating example The running example of the paper is adapted from an industrial project
where formal dependability analysis of automotive models were carried out by composing two
view transformations: (1) %# = tr1(Aut) maps automotive component models Aut to stochastic
Petri nets %# [Ajm+94], and (2) %# = tr2(Dep) is a reusable mapping [BMM99; MPB02] from a
domain-independent dependability model Dep to stochastic Petri nets. The target Petri net model
is defined as the (parallel) composition of the two transformations %# = tr1 ‖ tr2(Aut,Dep)
calculated over the two input models.

Due to IP restrictions of automotive models, we present the challenge using a public model
of railway networks developed as part of the Train Benchmark [Szá+17], a cross-technology
macrobenchmark of graph-based model query tools. A sample source and target model are
shown along with the traceability links in Fig. 3.1, while some transformation rules will be
illustrated later in Fig. 3.6.

3.1.1 Levels of compositional definitions

To categorize the levels of compositionality in view transformations, let us assume the existence
of two view transformations, tr1 and tr2 and a single source model Src to simplify the discussion.
Transformations tr1 and tr2 can be composed in different ways.

In many practical scenarios [Anj+14; Heg+16], chaining of view transformations is necessi-
tated, which is a sequential composition of transformations Trg = tr2 ◦ tr1(Src) = tr2(tr1(Src))
where tr2 takes the output of tr1 as its source model, and the target model of this transformation
chain is the subsequent result of tr2. The definition of sequential composition is supported in
several tools [Mel+05; Heg+16].

1Available under the Eclipse License 1.0 at https://github.com/ftsrg/viewmodel

36

https://github.com/ftsrg/viewmodel


3. Fully compositional view transformations

Source Model (Rail )

r1: Route r2: Route

sw: Switch

sp1: Switch
Position

sp2: Switch
Position

positions

follows

positions

follows

Target Model 
PN  = (tr1||tr2)(Rail, Dep)

swUp
1

swDown
0

swFail

swRep

r1Up
1

r1Down0

r1Rep
r1SwFail

r2Up 1

r2Down0

r2Rep
r2SwFail

tr1

Source Model (Dep )

ma: FailureRepairModel

mb: Immediate
RepairModel

mc: Immediate
RepairModel

tr2

Trace (tr1 : Rail → %# ): sw ↦→ {swUp, swDown, swRep, swFail}, r1 ↦→ {r1Up, r1Down, r1Rep},
r2 ↦→ {r2Up, r2Down, r2Rep}, sp1 ↦→ {swUp, swDown, r1Up, r1Down, r1Rep, r1SwFail},
sp2 ↦→ {swUp, swDown, r2Up, r2Down, r2Rep, r2SwFail}

Trace (tr2 : Dep → %# ): ma ↦→ {swUp, swDown, swRep, swFail}, mb ↦→ {r1Up, r1Down, r1Rep},
mc ↦→ {r2Up, r2Down, r2Rep}

Markers denote the trace of the nodes; multiple markers mean objects merged from both view transformations.

Figure 3.1: Source and target models with traceability links.

Given two existing view transformations Trg1 = tr1(Src) and Trg2 = tr2(Src), another
relevant aspect is parallel composition Trg = tr1 ‖ tr2(Src) = tr1(Src) ⊕ tr2(Src) where the target
model is derived by merging (or gluing) the results of transformations tr1 and tr2 both applied
on the same source model Src. If the two transformations are independent, the target model is
the union of the individual transformations, otherwise the aggregated result can be computed
e.g. by category-theoretical foundations [CNS12; DXC11; Ehr+99]. Below, we briefly categorize
the major assumptions for parallel composition tr1 ‖ tr2 used in existing transformation tools.

1. In the independent case, each target object is fully defined by a single rule in one trans-
formation, thus a union of target elements can be taken without merge, i.e. Trg =

tr1(Src) ∪ tr2(Src). Otherwise, a new transformation tr3 needs to be written manually.

2. In the serializable case, the parallel composition is turned into a sequential composition
where one transformation (e.g. tr1) is taken as-is (called primary) while the other transfor-
mation tr2 (called secondary) needs to be manually changed to tr′2, i.e.
tr1 ‖ tr2(Src) = tr′2(tr1(Src), Src)) or tr′1(tr2((A2), (A2)).

a) Certain transformation languages (e.g. ATL [Jou+08]) restrict primary rules, i.e. at
most one serialization tr′2(tr1(Src), Src)) or tr′1(tr2((A2), Src)) can exist. In ATL,
outgoing references of an object can only be defined in a primary rule (to ensure
multiplicity constraints in the target language), thus a static check will prevent
serializing the transformations in the wrong way.

b) Other serializable view transformation approaches [Ber+15; Heg+16] are unrestricted
to allow both serializations tr′2(tr1(Src), Src)) and tr′1(tr2(Src), Src)), but one of the
transformations still needs to be adapted to take the output of the other.

3. Fully compositional view transformation approaches allow to compose tr1 and tr2 as
tr1 ‖ tr2(Src) = tr1(Src) ∪? tr2(Src) without changing the transformations by using some
model merge operator ∪? to weave the target models of individual transformations into a
joint result.

37



3. Fully compositional view transformations

a) In ID-based tr1 ‖ CA2(Src) = CA1(Src) ∪ID tr2(Src) composition, rules assign the same
ID to objects that need to be merged in the final target model. The ID attribute can be
selected from the metamodel intrusively [QVT] or added by augmentation [Küh+10].

b) Relation-based tr1 ‖6 tr2(Src) = tr1(Src) ∪6 (Src) tr2(Src) composition can mark un-
related objects constructed separately by transformations CA1 or CA2 to be merged.
The merge operation is a parameter, i.e. it can be specified as a categorial colimit
with a suitable reference or connection model [Eng+97; SE06; DXC11], by direct
mappings [CNS12], or by graph bisimulation [BFS00].

3.1.2 Properties of view transformation engines

A view transformation engine Out (8 ) = exec(tr, In(8 ) ) repeatedly executes a transformation tr at
a given logical time point 8 on an input In(8 ) (which can be the source model Src (8 ) or a delta
Δ(8 )
Src ) to derive an output Out (8 ) (the target model Trg (8 ) or a delta Δ(8 )

Trg) while (a) maintaining
the consistency relation Trg = tr (Src) between the source and target models and (b) keeping the
target model a valid instance of the target language (Trg � "") ).

1. A batch engine takes the entire source model at any step: Out (8 ) = exec(tr, Src (8 ) ). A
delta-based engine takes a model change as input, but it executes on-demand: Out (8 ) =
exec(tr, Src (8−1) ,Δ(8 )

Src). A reactive engine executes in response to source model changes
by receiving deltas as model notifications: Out (8 ) = exec(tr,Δ(8 )

Src) [Ber+12a; MTD17].
Delta-based and reactive engines load the source model as a large delta upon initialization.

2. An incremental engine updates only those target elements which are affected by a specific
source model change, that is Δ(8 )

Trg = Out (8 ) = exec(tr, In(8 ) ), thus the new target model is

obtained by applying this delta: Trg (8 ) = Trg (8−1) +Δ(8 )
Trg . A non-incremental engine derives

the new target model from scratch:
Trg (8 ) = Out (8 ) = exec(tr, In(8−1) ).

3. A consistent engine continuously enforces consistency (correctness) constraints between
source and target elements: if Out (8 ) = exec(tr, In(8 ) ) then Trg (8 ) = tr (Src (8 ) ). A non-
consistent engine does not guarantee these constraints if the transformation rules are
conflicting with each other (e.g. in case of a specific source change).

4. A validating engine derives the view model as a valid instance model of the target meta-
model (or viewtype) where all metamodel constraints (e.g. aggregation, multiplicity)
are satisfied: if Trg (8 ) = exec(tr, In(8 ) ) then Trg (8 ) � "") . Checking these structural
constraints of the target metamodel is out of scope for a non-validating engine, thus
Trg (8 ) 2 "") . A validating engine can be used for both materialized and virtualized
viewtypes [Bru+17].

Fully compositional view transformations need to face the conceptual challenge that while
enforcing the consistency between the source and target models, one may easily violate the
structural constraints imposed by a metamodeling framework like EMF [Ste+09].

But for state-of-the-art transformation tools, these properties can only be achieved together
by imposing major restrictions on the expressiveness of the transformation language, otherwise
at least one of these properties will not be provided .

38



3. Fully compositional view transformations

petrinet

railway dependability

RailwayElement

Route

EBoolean
 = false

Switch

tion :
Position =
FAILURE

SwitchPosition

Position = 
FAILURE

ErrorModel

FailureRepair
Model

ImmediateRepair
Model

[0..1] route

[0..*] follows
[0..1] target[0..*] positions

[1..1] railwayElement

Arc

kind : ArcKind 

ArcKind

IN OUT
ImmediatePlace

tokens : EInt

Tran

PetriNTran
Timed
Tran

[1..1] place [1..*] arcs

[1..1] tran

Figure 3.2: Two source and one
target metamodels

3.2 Modelling and partial models

Our view transformation technique builds on 4-valued, i.e., inconsistency-tolerant partial models
(see Section 2.2) which store inconsistent and unknown information in models by generalizing
the merging of inconsistent and incomplete views in conceptual models [SE06].

For simplicity, we will omit attributes and predicate symbols from the discussion. Therefore,
we will assume that

• the signature 〈Σ, U〉 that is associated with the metamodels involved in the view transfor-
mation contains no attribute or predicate symbols, i.e., ΣA = ΣF = ∅; and

• every object is a domain object, i.e., I% (int) (?) = 0 and V% (?) = ∅ for all objects ? ∈ O%

in any partial model % = 〈O% ,I% ,V% 〉.

Nevertheless, the theory and the implementation can be easily extended to support attributes.
In fact, the view transformation tool accompanying this chapter is able to construct view models
that contain attributes.

Since each object in the partial model always has the same V% value, from now on, we will
omit V% from the notation of partial models. Instead, we will simply write % = 〈O% ,I% 〉.

3.2.1 Metamodels and structural constraints

In our running example, Fig. 3.2 defines two source (railway and dependability) and one target
metamodels (petrinet).

Metamodeling tools impose structural constraints on instance models to enforce a basic
structure. In the Eclipse Modeling Framework (EMF) [Ste+09], violating such a structural
constraint would prevent the materialization (saving) of a model.

Recall from Section 2.1.2 that EMF enforces the following structural constraints:
Type hierarchy. A metamodel defines a type system by supertype relations and abstract classes.
For each object > , there shall be a single class C, where (i) C is non-abstract, and (ii) > is an
instance of C′ when C′ is a supertype of C. In the petrinet metamodel in Fig. 3.2, an abstract
Tran is either an ImmediateTran or a TimedTran.
Type compliance. The metamodel restricts the classes C1, C2 of objects at the ends of a
reference R: ∀>1, >2 : R(>1, >2) ⇒ C1(>1) ∧ C2(>2). For example, the target of a tran reference
has to be an instance of the class Tran.
Multiplicity constraints are placed on upper bounds on the number of references adjacent to
an object: ∀>, >1, >2 : R(>, >1) ∧ R(>, >2) ⇒ >1 ∼ >2. For example, an Arc can have only one tran.

39



3. Fully compositional view transformations

swRep1 
Place = 1/2 
Tran = 1 
TimedTran = 1/2 
ImmediateTran=1/2 swRep 

Place = 1/2 
Tran = 1 
TimedTran = 1 
ImmediateTran=1/2

swRep 
Place = 0 
Tran = 1 
TimedTran = 1 
ImmediateTran=0 

swRep2 
Place = 1/2 
Tran = 1/2 
TimedTran = 1 
ImmediateTran=1/2

swRep 
Place = 0 
Tran = 1 
TimedTran = 1 
ImmediateTran=0 

Object merge
Propagation: Incomp

~

Concretization

(a) Partial model refinement by merge functions

swRep 
Place = 0 
Tran = ⚡ 
TimedTran= 0
ImmediateTran= 0

swRep 
Place = 1/2 
Tran = 1 
TimedTran= 1/2
ImmediateTran= 1/2

swRep 
Place = 0 
Tran = 1 
TimedTran= 1/2 
ImmediateTran= 1/2

swRep 
Place = 0 
Tran = 1 
TimedTran= 0 
ImmediateTran= 0

Propagation: Incomp Concretization Propagation: Incomp Materialization

(b) Inconsistency found during partial model refinement

Figure 3.3: Sample chain of partial models

Inverse relations. Some references R and R′ always occur in pairs: ∀>1, >2 : R(>1, >2) ↔
R′(>2, >1). See e.g., tran and arcs.
Containment hierarchy. EMFmodels are arranged in a strict tree hierarchy via the containment
references. EMF restricts objects not to (i) have multiple containers, and (ii) form circles via
containment references. E.g., an Arc cannot be contained by multiple Trans.
Equivalence relation ∼ is reflexive: ∀> : >∼> , symmetric: ∀>1, >2 : >1∼>2 ⇒ >2∼>1, and transitive:
∀>1, >2, >3 : >1 ∼ >2 ∧ >2 ∼ >3 ⇒ >1 ∼ >3. In a regular instance model, objects are different from
one other, but partial models may have explicit ∼ relations.

A partial model % is concrete, if (i) there are only 0 and 1 values in I% , and (ii) >1 ∼ >2 iff >1
and >2 are the same element of O% . A concrete partial model can be interpreted as an instance
model" (i.e. a labeled graph). If all structural constraints are also respected (" � "") then"
can be materialized into a regular EMF model.

Example 3.1 A sequence of partial models corresponding to Tran swRep of Fig. 3.1 is listed
in Fig. 3.3b. For example, the left-most partial model states that element swRep is a Tran (1),
and it is unknown (½) if it is also Place, a TimedTran or ImmediateTran.

3.2.2 Graph predicates

Recall from Definition 2.2 that a graph predicate i (E1, . . . , E=) is a first-order logic (FOL) predicate
over an infinite set of variables (>1, >2, . . .), the relation symbols of Σ (C8 ,R9 ,∼), standard logic
connectives (¬,∧,∨), and quantifiers (∃,∀). The semantics of a graph predicate Ji (E1, . . . , E=)K%/
can be evaluated on a partial model % with variable binding / : {E1, . . . , E=} → O% to yield a logic
value 0, 1,½ or  (Definition 2.10). For concrete (2-valued) models this semantics is equivalent to
standard FOL. A variable binding / of i (E1, . . . , E=) is called a match, if 1 < Ji (E1, . . . , E=)K%/ , i.e.,
there is a real match or an inconsistency.

Following [Var+18], the structural constraints of a metamodel"" are captured by a mal-
formedness predicate i"" where a match of the predicate highlights elements that violate the
constraint. If % is an instance model" , and there is no match of predicate i"" (1 % Ji""K%/ for
all variable bindings / , i.e. it can be 0 or ½), then" is a valid instance model: " � "" , thus it

40



3. Fully compositional view transformations

Type Hierarchy:

SuperUp:
C2(>)
C1(>)↑

, SuperDn:
¬C1(>)
C2(>)↓

if C1 is a supertype of C2,

Join:
C1(>) ∧ · · · ∧ C= (>) ∧ ¬C′

1(>) ∧ · · · ∧ ¬C′
< (>)

C∗(>)↑
if among types that are not subtypes of any C′

9 , C
∗ is the unique most generic non-abstract

common subtype of all C8 (= ≥ 1,< ≥ 0, and C∗ may be equal to one of C1, . . . ,C=),

Incomp:
C1(>) ∧ · · · ∧ C= (>) ∧ ¬C′

1(>) ∧ · · · ∧ ¬C′
< (>)

C∗(>)↓
if among types that are not subtypes of any C′

8 , C1, . . . ,C= and C∗ have no common
non-abstract subtype (not even an improper subtype, i.e. one of C8 or C∗),

Relations:
RelUp:

R(>1, >2)
C1(>1)↑ C2(>2)↑

, RelDn:
¬C1(>1) ∨ ¬C2(>2)

R(>1, >2)↓
if C1 and C2 are the source and target of

R,

Mult:
R(>, >1) ∧ ¬(>1 ∼ >2)

R(>, >2)↓
if R has upper multiplicity 1,

ContMult:
R1(>1, >) ∧ ¬(>1 ∼ >2)

R2(>2, >)↓
if R1,R2 are containment,

ContLoop:
R1(>1, >2) ∧ · · · ∧ R=−1(>=−1, >=)

R= (>=, >1)↓
if all R8 (1 ≤ 8 ≤ =) are containment

Equivalence:

∼Symm:
>1 ∼ >2
>2 ∼ >1↑

, ∼Tran: >1 ∼ >2 ∧ >2 ∼ >3
>1 ∼ >3↑

, ∼Refl: 1
>1 ∼ >1↑

Figure 3.4: Propagation rules for EMF structural constraints.

can be materialized. Since ΣF = ∅, this corresponds to a theory (Definition 2.12) containing only
error predicates and no other predicate definitions.

Example 3.2 A sample graph predicate derived from a structural constraint of the petrinet
metamodel (see Fig. 3.2) captures that a Tran needs to be either a TimedTran or a Immediate-
Tran: ∀> : Tran(>) ⇒ TimedTran(>) ∨ ImmediateTran(>).

3.2.3 Merge functions for partial models

In order to unify the semantic treatment of partial model concretization, view model merge and
rule application, we define a merge function< : O% → O& between objects of partial models %
and & . Function< is defined to ensure a refinement relation < : % ×& between partial models %
and & [Var+18], which respects information ordering as stated by the following conditions for
all >1, >2 ∈ O% :

• I% (C8) (>1) < I& (C8) (<(>1)) for all C8 ∈ Σ,

• I% (R9 ) (>1, >2) < I& (R9 ) (<(>1),<(>2)) for all R9 ∈ Σ,

• I% (∼)(>1, >2) < I& (∼)(<(>1),<(>2)).

Partial model refinement is information preserving in the sense that all true (resp. false)
predicates remain true (resp. false) in any refinement of a partial model (as proved in [Var+18]).

41



3. Fully compositional view transformations

Example 3.3 Before the formal definitions, merge functions are informally illustrated along
two different sequences in Fig. 3.3. The first sequence (Fig. 3.3a) starts from a partial model
where two objects are marked as equivalent (∼), thus (a) an object merge function can be
applied, which merges information from input objects: swRep becomes both a Tran (due to
the top object) and an TimedTran (due to the bottom object). (b) Then an Incomp propagation
rule will refine the model in accordance with the type hierarchy since a TimedTran object
cannot be a Place or an ImmediateTran. Finally, (c) the concretization step has no further
effect, and we obtain an instance model on the right.
The second sequence (Fig. 3.3b) first (a) applies an Incomp propagation rule to ensure that a
Tran is no longer a Place. Then (b) concretization is executed to set½ values to 0 for TimedTran
and ImmediateTran. Now (c) another Incomp propagation rule finds that an abstract Tran
needs to be refined into either a TimedTran or an ImmediateTran thus it changes their 0 value
to the inconsistent value  (both 0 and 1 at the same time). (d) If a materialization step is now
executed then the inconsistent object is removed.

Below, we define the different merge functions for partial models:

1. Propagation rules handle type inferencing over 4-valued logic. A propagation rule (detailed
in Figure 3.4) takes the form prop =

i (E1,...,E= )
U8↑ ··· U:↓ , where i is a precondition, and U8↑ (known

to be true) and U:↓ (known to be false) are atomic actions over the free variables of i . For
every match / of i (with 1 < Ji (E1, . . . , E: )K%/ ), we obtain a merge function prop/ from %

to a new partial model & with O& = O% , prop/ (>) = > , and I& is obtained from I% :

JUK&
/
=


JUK%

/
⊕ 1, if U↑ is an action of prop,

JUK%
/
⊕ 0, if U↓ is an action of prop,

JUK%
/
, otherwise.

The function prop/ is a merge function, because both�⊕1 and�⊕0 respect the refinement
< of logical values.

2. Object merge om : O% → O& merges two distinct objects >1, >2 ∈ O% into a joint object
>1,2 ∈ O& if CAD4 < I% (∼)(>1, >2) and leaves the object unchanged otherwise. Formally,
O& = O% \ {>1, >2} ∪ {>1,2}, and I& is obtained by combining the contents of the two
elements of I% with ⊕ i.e.

I& (C8) (>) =
{
I% (C8) (>1) ⊕ I% (C8) (>2), if > = >1,2,

I% (C8) (>) otherwise.

The function om>1,>: is a merge function, because ⊕ respects the refinement < of logical
values.

3. Concretization is a merge function conc : O% → O& that refines a partial model % to a
concretized (partial) model& by setting all ½ values to 0. Partial model& can only contain
0, 1 and  values. If & has no  values then it is a concrete instance model. Concretization
preserves partial model refinement, i.e., % < & .

A materialization function mat : O% → O& takes a concretized partial model % and removes
all inconsistent elements by setting all  values to 0 to obtain an instance model & . In general,
materialization is not a merge function (as % % &), since information preservation is violated
when rewriting predicates ( ↦→ 0). However, if a concretized (partial) model is free from values,
then materialization is a trivial merge function due to being idempotent. Materialization is non-
invasive, as it keeps all valid model elements in a concretized model, but removes inconsistent
model elements to make the instance model EMF-compliant (e.g., serializable).

42



3. Fully compositional view transformations

‹view› ::= ‹rule› (‹rule›)∗
‹rule› ::= rule ‹pattern-dec› (=> ‹pattern-dec›)? (‹lookup›)∗

‹lookup› ::= lookup ‹pattern-dec› => ‹param-list›
‹pattern-dec› ::= ‹pattern-name› ‹param-list›
‹param-list› ::= (‹variable› (,‹variable›)∗)
‹pattern-def› ::= ‹pattern-dec›; ‹pattern-body› (or ‹pattern-body›)∗

‹pattern-body› ::= {‹constraint›; (‹constraint›;)∗}
‹constraint› ::= C8(‹variable›) | C8.R8(‹variable›,‹variable›)

| ‹variable› == ‹variable› | ‹variable› != ‹variable›
| (find | neg find | count find) ‹pattern-dec›
| (check | eval) (‹expression›)

Figure 3.5: A compositional view transformation language

Correctness of merging partial models Computations over 4-valued partial models carried
out by a sequence of merge functions and finalized by concretization and materialization. For-
mally, if % is a partial model and< =<: ◦ · · · ◦<< a maximal sequence of propagations and
object merges applied to % , then& = (mat ◦ conc ◦<) (%) is an instance model and 1 % Ji""K& ,
where i"" is the disjunction of error patterns corresponding to enforced metamodel constraints
from Section 3.2.1. Therefore the final result is always a valid instance model. Moreover, if we
have Ji""K% = 0, then % < & , which means that no information is lost.

Proof sketch: As merge functions are closed over composition,< and conc ◦< are merge
functions. Propagation rules ensure that Ji""K< (% ) ∈ {0,½, }. By changing ½ values in I< (% )
by conc, we obtain Ji""K(conc◦<) (% ) ∈ {0, }, and the ½ values are removed from I(conc◦<) (% ) .
Lastly, because enforced metamodel constraint violations i"" can be corrected by removing
objects, Ji""K& = 0, hence mat ensures that & is an instance model.

If we initially have Ji""K% = 0, i.e. the partial model is surely valid,< (or any other sequence
of propagations and object merges defined within this paper) does not introduce any  values to
I< (% ) . Thus mat is the identity function and % < & . Otherwise a portion of objects is removed
when obtaining & to avoid violating metamodel constraints i"" .

3.3 View model transformations

In this section we propose a view transformation language with relation-based composition
along with a reactive, incremental, validating and inconsistency-tolerant execution engine. The
view transformation is based on 4-valued partial models.

3.3.1 View definition by graph patterns

In this paper we introduce a declarative and fully compositional view transformation language
based on graph queries. We reuse the Viatra Query Language [Ujh+15] to form view transfor-
mation rules by using pairs of precondition patterns, template patterns and lookups to reference
(matches of) other transformation rules.

A graph pattern captures structural constraints with a graph predicate. In the concrete syntax
of Viatra (see Fig. 3.5), a pattern is declared (‹pattern-dec›) by a unique name (‹pattern-name›),
and a list of formal pattern parameters (‹param-list›). The predicate of a pattern is defined by
a disjunction of pattern bodies (‹pattern-body›) connected by the or keyword. A pattern body

43



3.
Fu

ll
y
co

m
po

si
ti
on

al
vi
ew

tr
an

sf
or

m
at

io
n
s

Railway model transformation (tr1):

rule element(e) => elementNet(pUp, pDown, tRep);

template elementNet( 
pUp, pDown, tRep) 

pUp:
Place 1 pDown:

Place 0

tRep: Tran

pattern element(e)

e: Switch

e: Route

OR

rule req(r, sw) =>

connect(pSwUp, pSwDown, pRUp, pRDown, tRRep) {

lookup element(r) => (pRUp, pRDown, pRRep);

lookup element(sw) => (pSwUp, pSwDown, _);

}

pattern req(r, sw)

sw: Switch

r: Route

sp: SwitchPosition

positions

follows

template connect(pSwUp, pSwDown, 
pRUp, pRDown, tRRep)

pRUp:
Place

pRDown:
Place

pSwDown: Place

pSwUp:
Place

tRFail: ImmediateTran

tRRep: Tran

Dependability model transformation (tr2):

rule eModel(m) => errorNet(pUp, pDown, tRep);

template errorNet(pUp, pDown, tRep) 

pUp:
Place

pDown:
Place

tRep: Tran

pattern eModel(m)

m: Error
Model

rule frm(m) => frmNet(pUp, pDown, tRep) {

lookup eModel(m) => (pUp, pDown, tRep);

}

template frmNet(pUp, pDown, tRep)

pUp:
Place

pDown:
Place

tFail: TimedTran

tRep: TimedTran

pattern frm(m)

m: FailureRepair
Model

rule imm(m) => immNet(pUp, pDown, tRep) {

lookup eModel(m) => (pUp, pDown, tRep);

}

pattern imm(m)

m: ImmediateRepairModel

template immNet(tRep)

tRep: ImmediateTran

(a) Rules for the railway model (tr1), dependability model (tr2) and glue (g) transformation definitions, which
are composed to obtain the transformation tr1 ||g tr2.

Glue transformation (g):
pattern glue(e, m)

m: ErrorModel

e: RailwayElement

rule glue(e, m) {

lookup element(e) =>

(pUp, pDown, tRep);

lookup eModel(m) =>

(pUp, pDown, tRep);

}

pattern frm(m) { FailureRepairModel(m); }

@Template pattern frmNet(pUp, pDown, tRep) {

Place(pUp); Place(pDown);

TimedTran(tFail); TimedTran(tRep);

Arc(aUpFail); Arc.kind(aUpFail, ArcKind::IN);

Arc.place(aUpFail, pUp); Arc.tran(aUpFail, tFail);

Arc(aFailDown); Arc.kind(aFailDown, ArcKind::OUT);

Arc.tran(aFailDown, tFail); Arc.place(aRepUp, pDown);

}

(b) Precondition pattern frm and template frmNet with
Viatra Query textual syntax.

Place1 Transition
(abstract)

Immediate
Tran

Timed
Tran

tokens

IN Arc IN and OUT Arcs

(two objects)

OUT Arc

(c) Graphical syntax for stochastic Petri nets.

Figure 3.6: View transformation rules for Train Benchmark dependability example

44



3. Fully compositional view transformations

Incremental View Transformation
Engine

1. Incremental
Query Engine

3. Inconsistency-tolerant
Partial Target Model

(ITPT)

Source
Model

2. S2PT
Transformation

4. PT2T
Materialization

5. Model
Manipulation

API

Target
Model

Precondition
Queries

Postcondition
Templates

Unit Propagation
Rules

Transformation
Rules

Structural
Constraints

S2PT Trace PT2T Trace

match set change
notifications

partial model
updates

ITPT change
notifications API calls

executes

listens for
matches parses

into statements

incorporates
statements

fixed pointexecutes

satisfiesensures

link to matches
link to
target
objects

Figure 3.7: Overview of the view transformation

contains a conjunction of constraints that can be type and reference checks (C8() and R8(,)),
equivalence check (==), positive, negative and aggregated pattern calls to compose complex
patterns (resp. find, neg find and count find keywords), or external Java source code (using
check or eval keywords) for attribute checks.

As templates of a view transformation rule, we define a restricted set of graph patterns (de-
noted by the underlined part of Fig. 3.5), which disallows multiple bodies, inequality constraints,
negative and aggregated pattern calls, and check or eval expressions. In summary, a template
pattern is a conjuction of atomic constraints.

A view transformation definition consists of a set of view transformation rules, where each
rule consists of a (i) a precondition pattern for the source language, (ii) a(n optional) template
pattern for the target language built from a restricted subset of pattern language elements, and
(iii) a list of lookups for traceability links and parameter bindings. A lookup refers to implicit
traceability links between source and target elements created when the source pattern was
matched and the corresponding target elements were created by the transformation rule referred
in the lookup.

Example 3.4 View transformation rules of our running example are defined in Fig. 3.6. A
detailed description is provided for the frm rule (for dependability transformation) in Fig. 3.6b.
Its precondition pattern matches a single FailureRepairModel element m, assuming that the
eModel rule has already been applied in the context of m as defined by the corresponding
lookup. As a result of the rule, the frmNet template is applied on the target model, which
specifies the creation of two places (pUp and pDown), two TimedTran elements (tFail an
tRep), and two corresponding Arcs between them (from pUp to tFail and from tFail to pDown).
However, due to the right side lookup directive, the two places pUp and pDown as well as
the transition tRep need to be merged with corresponding target Petri net elements already
created when rule eModel was applied – as defined by the unification introduced by identical
variable names.

3.3.2 Execution of view transformations

View models are constructed in four steps as shown in Fig. 3.7.
(1) First, each view transformation rule creates a partial model representing the application

of a template predicate in isolation. Next, (2) the partial models are merged together by linking
different view fragments along equivalences ∼ based on the lookups in rules. After that, (3) the
merged partial model is refined by various merge functions to enforce target metamodel con-
straints. Finally, (4) as the merged view may contain inconsistencies due to the contradicting
view specifications, a materialization step operation removes  values from the partial model to
end up with a regular target instance model.
I. Reactive (source-incremental) execution. First, the precondition i( of a rule ' is matched
against the source model by calculating the match set /( = {/ | 1 < Ji(K%

/
}. We explicitly

reuse existing features of the Viatra framework. Changes in the match set of source predicates
are handled by using the incremental graph query engine of Viatra [Ujh+15]. All subsequent

45



3. Fully compositional view transformations

element(sw) => elementNet(swUp,swDown,swRep)

swRep 
Tran = 1

swDown 
Place = 1

swUp 
Place = 1

<<DEL>> eModel(ma) => errorNet(maUp, maDown, maRep)

maUp 
Place = 1

maDown 
Place = 1

maRep
Tran = 1

maDownRep
Arc = 1

maRepUp
Arc = 1

::IN 
ArcKind = 1

::OUT 
ArcKind = 1

tran

place

tran

place

kindkind

swUp swDownswRep

~

~

~

~~

~

<<DEL>> frm(ma) => frmNet(maUp, maDown, maRep)

maUp 
Place = 1

maDown 
Place = 1

maFail 
TimedTran = 1

maFailDown 
Arc = 1

maUpFail 
Arc = 1

maRep 
TimedTran = 1

<<DEL>>
glue(sw,ma)

0 
EInt=1

1 
EInt=1

~ ~

tran place

kind

tranplace

kind

~

tokenstokens

Figure 3.8: Initial partial model
derived from predicates with the
effects of a source change shown
as «DEL» stereotypes

processing steps in our engine are triggered and executed as a reactive transformation [Var+16],
therefore our entire engine becomes reactive.
II. Template instantiation and model merge. Then each rule ' is applied independently.
For each match / ∈ /( of rule ' a template partial model ) = 〈O) ,I) 〉 is created for each rule
according to the target predicate i) . This ) is constructed as:

• Each variable E of i) is mapped to an object of O)

• Constraints of i) are translated to a 1 value in I) :
– If there is a C8 (E) in the predicate i) and the variable E is mapped to an object > ,

then I) (C8) (>) = 1.
– If there is a R9 (E1, E2) in the predicate i) , and the variables E1, E2 are mapped to

objects >1, >2, then I) (R9 ) (>1, >2) = 1.
– If there is a E1 ∼ E2 in the predicate i) and the variables E1, E2 are mapped to objects
>1, >2, then I) (∼)(>1, >2) = 1.

• Every other values in I) are set to ½.

Next, each independently created template partial model {)1, . . . ,)=} is copied together into
a merged partial model"% = 〈O"% ,I"% 〉 in order to represent all templates and lookups.

• O"% consists of the union of objects of the template partial models: O)1 ∪ · · · ∪ O)= .
• I"% is the same as the I)8 of template partial model )8 : for each objects >1, . . . , >= in a
template model )8 , and for each symbol U ∈ Σ: I"% (U) (>1, . . . , >=) = I)8 (U) (>1, . . . , >=)

• Between the templates, lookup rules set additional I"% (∼) to 1 to add connections
between templates.

• In all other cases I"% (U) (>1, . . . , >=) is ½.

The partial model %" obtained after this step is para-complete [Bel77; KO17], thus it may
contain ½ and 1 values, but no 0 and  values.

Example 3.5 Fig. 3.8 illustrates the application of the frm rule (from Fig. 3.6) for the source
models of Rail and Dep from Fig. 3.1.
First, the precondition of the rule frm checks for the existence of an FailureRepairModel
element, and then the template errorNet is applied. As a result, the bottom part of the partial

46



3. Fully compositional view transformations

model (marked by a dashed rectangle) is created with model elements corresponding to the
template.
Since the rule contains a lookup to another rule eModel, partial model elements created by the
two rules need to be merged. This is initiated by adding equivalence relations ∼ between the
corresponding elements defined by variables such as maUp, maDown and maRep.
Similar equivalences are declared by applying other transformation rules from Fig. 3.6 and
Fig. 3.8 presents the entire partial model derived by all rules. The glue rule is a special view
transformation rule where no target elements are created but only equivalences are declared.

III. Reactive objectmerge and propagation. By now, all objects of the partial model created by
different templates are identified to be merged by marking them with equivalence relations. The
merge functions defined for inconsistency tolerant partial models in Section 3.2.3 are executed
in an incremental way.

Each propagation rule prop = i/U8 has a graph predicate i as a precondition which can be
captured by a regular graph query evaluated over 4-valued logic. The execution of a propagation
rule can be carried out reactively by extending the constraint rewriting technique [SV17] to
provide 2-valued may and must graph predicates for under- and over-approximation. For the
incremental execution of an object merge om, we rely upon incremental maintenance techniques
for strongly connected components used for graph queries with transitive closure [Ber+12b].

As a result of this step, all ½ values are removed, and all equivalent objects (marked by ∼)
are merged, thus the partial model becomes para-consistent [Bel77; KO17] as it contains only
0, 1 and  values. However, during the propagation phase, the partial model may contain both
uncertain ½ and inconsistent  values.

Example 3.6 The effects of object merge and propagation rules were illustrated in Fig. 3.3a.
The two swRep objects of the partial model created by rules element (yellow dot) and frm
(blue diamond).
The Fig. 3.3b case corresponds to a hypothetical source change where the match of rule frm no
longer exists, thus the effects of the template need to be removed. The exact merge procedure
was discussed in Example 3.3. Templates removed from the partial model due to this source
change are shown as «DEL» stereotypes in Fig. 3.8.

IV. Incremental materialization. At the final step, erroneous elements of the target model are
removed by a materialization step. After materialization, the partial model is equivalent to the
target instance model, thus (1) all structural constraints of the target metamodel are ensured in
accordance with the correctness of merge functions (see Section 3.2.3), hence our technique is
validating. Moreover, (2) each change in this final partial model can be incrementally propagated
to the target instance model, hence our approach is (target-)incremental. If a source model change
does not affect a view model, then no change is propagated to the target view model. Therefore,
(3) our approach is hippocratic.

Concerning the (source-target) consistency of our approach, we need to separate the case
when no  symbols need to be removed during materialization. In such a case, all steps are
valid refinement steps, thus it is guaranteed that the final model % refines all applied templates
)8 ()8 < % ) which ensures consistency. If an  symbol is removed during materialization, then
the cause of this inconsistency can be shown by a corresponding match of a propagation rule
precondition tracing the found issue back to the applied templates, the source model and the
enforced structural constraint of the target metamodel.

Example 3.7 If all the propagation steps are executed for the partial model of Fig. 3.8 then
the target Petri net instance model of Fig. 3.1 is obtained.

47



3. Fully compositional view transformations

● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ● ● ● ●

●

●
●

●
●

● ● ● ● ●

● ●
●

●
●

● ● ● ●
●

Initial query Initial transformation (A) Usual mix (B) Depend. stress mix (C) VirtSw. stress mix

D
ependability

V
irtualS

w
itch

10+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size = sqrt(#source elements * #target elements)

E
xe

cu
tio

n 
tim

e 
(m

s)

Transformation ● Our approach Source−reactive VIATRA Trace−reactive VIATRA

(a) Complexity of source query initialization, initial transformation, and the sychro-
nization of a (A) balanced mix of modifications of 100 operations, and modification
mixes of 100 operations focused on stressing the (B) Dependability, (C) VirtualSwitch
transformation.

●
●

●
●

●

●
●

●
●

●

D
ependability

V
irtualS

w
itch

10+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size

E
xe

cu
tio

n 
tim

e 
(m

s)

Execution step ● S2PT PT2T

(b) Complexity of the two
execution phases in our ap-
proach during initial trans-
formation.

Figure 3.9: Measurement results

3.4 Evaluation

3.4.1 Research questions

Our view transformation approach is fully implemented as an open source project2. We carried
out an experimental evaluation to address three research questions:

RQ1. What is the complexity of different execution phases in our view transformation engine?

RQ2. What is the performance overhead for the initial run of our view transformation engine
compared to reactive imperative transformations with explicit traceability?

RQ3. What is the performance overhead for change-driven behavior of our view transformation
engine compared to reactive imperative transformations with explicit traceability?

3.4.1.1 Case studies

We selected two substantially different view transformation challenges for our investigation.
(1) Dependability is an extended version of the case study used in this paper which aims to
compose two separate transformations in a way that the target Petri net model is significantly
larger than any of the two source models. (2) VirtualSwitch is a filtering transformation taken
from [Deb+14] where the size of the source model is significantly larger than the size of the target
model. We believe that these transformations are representative for key practical applications of
view transformations: the VirtualSwitch scenario is typical for in traditional view models with
information loss [Bru+17] while the transformation challenges in the Dependability case are
common for the formal analysis of extra-functional properties of systems [MPB02; Gil+10].

2https://github.com/ftsrg/viewmodel

48

https://github.com/ftsrg/viewmodel


3. Fully compositional view transformations

3.4.2 Compared approaches

First, we instrumented our ViewModel transformation approach to enable the clear separation
of different transformation phases to address RQ1. Then we compare our approach with two
different view transformation styles available in Viatra3. These solutions use an explicit trace-
ability model (vs. implicit traceability in our approach) and imperative actions in transformation
rules using Java/Xtend (vs. declarative query-based templates). However, differences in query
performance can be mitigated to a large extent. (i) The source-reactive solution [Deb+14] uses
exactly the same source queries as our view transformation approach, but rule priorities had
to be set carefully. (ii) The trace-reactive solution [Heg+16] uses queries with both source and
traceability elements as part of its precondition. Since both the level of compositionality and
the properties of the view transformation engine are different in these approaches compared to
our view transformation approach (see Section 3.5), our evaluation may reveal the performance
trade-offs of the increased expressiveness of our approach.

3.4.3 Experiment setup

To investigate the initial transformation runs (RQ2), our measurement setup contains 5 source
models of increasing size. For the Dependability case, the source models ranged 1K to 25K
while the target models ranged from 3K to 72K. For the VirtualSwitch case, the source models
were ranging from 25K to 425K elements, while the target models were ranging from 500 to 9K
elements. In each case, we measured the initial time for populating the caches of queries and the
execution time of the first transformation, while the load time of source models was excluded.
To address RQ1, we measure how much time the different phases of our view transformation
approach takes during this initial run.

To investigate the change-driven behavior (RQ3), we first created 10 different elementary
changes (modifications of one element) and 5 change mixes containing 100 elementary changes
each (with fix ratio between different types of change within each mix). Due to space restrictions,
we only present results for 3 change mixes within the paper, while all other measurements (and
plots) are available in [d21]. Change mix (A) presents a balanced mix of changes, while types of
changes in mixes (B) and (C) were selected from those elementary changes that caused longer
synchronization times in the Dependability and VirtualSwitch cases, respectively.

Each experiment was executed 30 times after 10 warmup runs on a cloud-based virtual
environment (with 4 CPU, 16GB memory and 8GB disk size) on Amazon AWS.

3.4.4 Results

Our evaluation results comparing the performance of core reactive Viatra transformations and
our viewmodel approach are presented in Fig. 3.9a where the two Viatra transformations (source
vs. trace-reactive) have very similar behavior. The two key internal phases of our approach
separating the source-to-partial model (S2PT) transformation and partial-model-to-target (PT2T)
materialization stages (with propagation and concretization) are presented in Fig. 3.9b.

Since the VirtualSwitch case is dominated by the size of the source model while the De-
pendability case is dominated by size of the target model, the logarithmic horizontal (x) axis
presents a combined model size as the geometric mean (

√
|BA2 | ∗ |CA6 |) of source and target model

sizes (i.e. number of objects) which is compatible with the logarithmic scale of the plots. The
logarithmic vertical (y) axis presents the execution times (in ms).

3Our repository contains an implementation of the transformations in batch ATL and a partial implementation
in eMoflon, but the different performance optimizations in those tools would disallow to separate query performance
from transformation performance.

49



3. Fully compositional view transformations

The intermediate partial model for the largest source models had (1) 222K partial model
variables and 401K partial model atomic statements to represent 72K target objects (Dependability)
and (2) 38K partial model variables and 58K partial model atomic statements which represents
8K target objects (VirtualSwitch).

3.4.5 Discussion

Based on these experimental results, we make the following observations related to the research
questions:

RQ1: Both major view transformation phases seem to grow polynomially in model size, but
more data points (model sizes) would be necessitated for a firm statement.

Dependability: The construction of the partial target model and its materialization are both
challenging. The S2PT phase (0.4 s on smallest, but 12 s on largest) and the PT2T (0.3 s on smallest,
but 14 s on largest) were within 0.5 orders of magnitude, while PT2T wass slower on large models
as it has to perform type inferencing and complex object merges.

VirtualSwitch: The key challenge is to filter the source model, thus the intermediate partial
model is smaller and necessitates fewer complex merges than above. Thus PT2T was 1 order of
magnitude faster (S2PT 3.7 s on largest vs PT2T 0.65 s on largest).

RQ2: The initial query took exactly the same time (0.15 s for largest Dependability, 150 s for
largest VirtualSwitch) for each implementation of the transformations, because the same queries
and the same query engine (Viatra) was used, thus our measurements highlight the differences
in the transformation phase. There was a 2 orders of magnitude difference in Dependability
(26.7 s vs 0.48 s on largest), and 1 in VirtualSwitch (4.4 s vs 0.4 s on largest) between execution
times in favor of reactive Viatra transformations.

RQ3: In the Dependability case, we observed 2.5 orders of magnitude difference in mixes (A)
and (B) which cause major changes in the target model (94 s vs 0.2 s on largest). In mix (C), which
cause significantly fewer target changes as only attributes of places are modified, Viatra was
instantaneous, but our approach also took only 10–150ms depending on model size to process
the change.

In the VirtualSwitch case, Viatra was instantaneous even in the modification mix specifically
designed to cause target model changes. In (A) and (C), our approach took around 100-150 ms,
which is significantly less than the initial transformation.

3.4.6 Conclusion

Our approach is more sensitive to target model size than source model size. The incremental
behavior of our approach is also dominated by the size of the implied target change. For small
target deltas, the overhead of our approach was less than 150ms. The S2PT phase takes more
time for complex model filtering and weaving challenges, while PT2T is slower when it has
to materialize a large partial model. Unlike reactive Viatra [Deb+14; Var+16], our approach
achieves compositional and consistent view transformations (i.e. no manual adaptations to
compose the original transformations). The performance penalty of this increased expressiveness
is about 1–2 orders of magnitude increase in execution time compared to an industrial model
transformation engine.

3.4.7 Threats to validity

To mitigate internal validity, 10 warm-up runs were included prior to the measurements to
decrease the fluctuation of runtime caused by JVM. While our measurements were executed in
the cloud (AWS), the same virtual machine was used for comparing the different approaches in a
fair way.

50



3. Fully compositional view transformations

To address external validity, we selected two transformations with substantially different
characteristics (massive filtering in VirtualSwitch vs. complex merging in Dependability). Train
Benchmark models serve as a common source model used in both cases, which may reduce the
generalizability of our result to other domains. However, the Train Benchmark [Szá+17] has
been actively used within the MDE community as a performance benchmark for different query
and transformation tools, thus external validity is not compromised.

3.5 Related work

A desired view transformation approach offers a fully compositional language and a reactive,
incremental, consistent and validating engine but no transformation tools currently exist which
support all these properties. Our overview of (the significant amount) of related work primarily
focuses on existing transformation tools by categorizing the level of support (1) for parallel com-
positionality in transformation languages, and (2) for desirable transformation engine properties
in Table 3.1. For space considerations, we highlight only the typical restrictions found in the
context of multiple tools.

Imperative transformation approaches reactively build the target model (like imperative
ATL, Viatra or ETL) but they do not provide consistency guarantees, i.e. certain target models
may not be consistent with a source model. Unfortunately, such inconsistencies can propagate
to future stages of the transformation.

Bidirectional model synchronization tools (like different TGG implementations or JTL) either
guarantee consistency or they abort the execution of the transformation. These tools offer a
certain level of serializability, but they are not fully compositional.

Dedicated view transformation approaches (like TGG Views, Viatra Views, Reactive ATL)
use a restricted transformation language (wrt. their regular transformation counterpart) to
provide desirable engine behavior. However, parallel composition of different transformations is
very limited.

Most existing fully compositional approaches (like QVTr, ramification, Epsilonwith combined
ETL and EML languages) are neither reactive nor incremental and only EML is validating. Only
GRoundTram and ATLGT support target incrementality and delta-based source incrementality,
but over a custom (non-EMF compliant) model representation. The closest approaches to ours
are [HLR06; Cic+10] as they build a knowledge base based on first order logic and target models
are derived by logical inference, but these approaches are not fully compositional.

Our work provides a view transformation approach with (1) a fully compositional transfor-
mation language built on top of an existing declarative query language, and (2) a transformation
engine which is reactive, incremental, validating and inconsistency-tolerant at the same time. The
inconsistency-tolerant engine is a relaxed version of a consistent enginewhere Trg ( 9 ) ≠ tr (Src ( 9 ) )
may happen after some conflicting source model changes Out ( 9 ) = exec(tr,Δ( 9 )

Src ), but all other
desirable properties are preserved. Most of the target model satisfying"") is preserved, while
inconsistencies are explicitly highlighted by the framework. Lastly, by delaying notifications to
engine, reactive behavior can be optionally replaced with delta-based processing.

3.6 Conclusions

We proposed a fully compositional view transformation language executed by a reactive, in-
cremental, validating and inconsistency-tolerant view transformation engine. Our approach
reuses the Viatra Graph Query Language [Ujh+15] to define target fragments which are merged
during transformation using the concepts of inconsistency tolerant partial models based on
4-valued logic foundations to gracefully handle temporal inconsistencies during transformations.

51



3.
Fu

ll
y
co

m
po

si
ti
on

al
vi
ew

tr
an

sf
or

m
at

io
n
s

Table 3.1: Comparison of view model transformation techniques.

Engine properties

Parallel composition React. Incr. Cons. Valid. Comment

Our approach relation-based R  IT  

Reactive ATL [JT10; MTD17] independent R  C  Restrictions in source and trace language

TGG Virtualized View [JKS06] independent R  C # Only single node or reference in rule target, limited NAC

TGG Materialized View [Anj+14] independent R  C  Only single node or reference in rule target, limited NAC

Viatra Views [Deb+14] independent R  C  Only single node or reference in rule target

QueST [GDM14] independent D  C  Only single node or reference in rule target

Incremental QVTr [Son+11] restricted serializable R  ? ? Cons., valid. difficult to determine
due to QVTr semantic issues [Gre06; Ste10]

EMF Views [Bru+15] independent NR # C # Infers target metamodel

Active Operations [Bea+10] restricted serializable R  C # Transformation also defines target metamodel

Hearnden et al. [HLR06] restricted serializable D  IT # Produces deduction tree tree as target model

ATL (no imperative code) [Jou+08] restricted serializable NR # C  Restrictions on outgoing references in non-primary rules

ATL (+imperative code) [Jou+08] serializable NR # NC  No consistency checking for imperative actions

eMoflon TGG [Lau+12; Leb+17] restricted serializable D  C/A  Restrictions for negative application conditions (NAC)

Viatra [Var+16; Heg+16] serializable R  NC  No consistency checking for imperative actions

QVTr [QVT] M2M [Wil17] ID-based NR # ? ? Cons., valid. difficult to determine
due to QVTr semantic issues [Gre06; Ste10]

Epsilon ETL [KPP] + EML [KPP06] relation-based NR # NC  Merge operators for composition in separate language

JTL [Cic+10] serializable D # C/A  No answer if the target cannot satisfy constraints

RAMification [Küh+10; Mey16] ID-based NR # C # Metamodel constraints are relaxed
GRoundTram, ATLGT [Hid+11; HT16] relation-based D  C # Graph bisimulation based data model, non-EMF

BiGUL [KZH16] relation-based NR # C/A  PutBack-based functional programming
may be adapted to EMF [Anj+17]

Legend: R reactive, D delta-based, NR non-reactive (batch); C consistent, C/A consistent or aborts, NC non-consistent, IT inconsistency tolerant;  yes, # no

52



3. Fully compositional view transformations

The execution engine reuses existing support for incremental graph queries as available in the
Viatra framework [Var+16] to provide reactive behavior, while graph predicates used in merge
functions also enable incremental propagation of changes while ensuring structural constraints
of the target language.

Our experimental evaluation also highlighted that such an increased expressiveness on the
view transformation language level does not come for free as the core (imperative and reactive)
Viatra engine executes 1-2 orders of magnitude faster for the case studies – but the individual
transformations had to be modified manually to achieve the necessitated merge functionality.

The detailed evaluation of the different execution phases also points to key directions for
future work for a hybrid view transformation engine. A sophisticated static analyzer may
automatically reveal transformation rules where compositionality falls into a more simple class,
thus many optimizations available in existing view transformation tools would become amenable
to improve performance. Nevertheless, our view transformation approach already provides
strong support for the most challenging composition problems for a very expressive view
transformation language.

53





Chapter4
Multiplicity reasoning for consistent

graph model generation

Model-based systems engineering frequently uses complex modeling tools, like Capella, Artop,
Matlab Simulink or Yakindu Statecharts. When these modeling tools are used in safety-critical
systems, safety standards (like DO-330 [RTC11] for avionics systems) may prescribe that (1) only
the output of a qualified tool can be trusted, and (2) such a tool should meet the same requirements
as the critical system component it designs. However, such quality assurance for the software
running in modeling tools is very complex, which makes tool qualification an extremely costly
process. As such, automated techniques for synthesizing effective test suites used in the software
quality assurance of complex modeling tools would be highly beneficial.

The automated synthesis of high-quality test cases is a recurrent challenge in many areas of
software and systems engineering in order to simultaneously improve quality and productiv-
ity. Since test cases created manually by engineers can easily miss important corner-cases of
specifications, certain application areas (e.g. safety-critical software) substantially rely on such
automated test case generators.

This chapter focuses on automatedmodel generators which represent tests in the form of graph
models. This is a subclass of generators with high practical relevance but also high complexity.
For example, graphs may models complex test stubs in object-oriented programs [Mil+07; KM04]
(e.g. nodes are objects, edges are pointers). The quality assurance of smart cyber-physical
systems (CPS) can rely upon prototypical test contexts given in the form of graphs [Mic+12;
Ben+18; Iqb+15]. Model generators are also beneficial for testing modeling tools [Sem+17].

Further practical application scenarios are investigated in [Var+18], which identifies a long-
term research agenda aiming to provide desirable high-level properties for automated model
generators. Using the terminology of [Var+18], an advanced synthetic model generator should
be domain-customizable, consistent, diverse, realistic and scalable.

For domain customizability, we use precise underlying specification techniques to capture
the domain concepts and their relations captured in the form of a metamodel, while consistent
models can be further restricted by design rules or well-formedness constraints (defined as OCL
constraints [OCL] or graph patterns [VB07; Ujh+15]).

There is a wide range of model generators such as Alloy [Jac02; TJ07], Formula [JLB11; JS06],
USE [KHG11], UML2CSP [CCR14], SDG [SSB20; SSB17] and Viatra Solver [Sem+20c; Sem+19]
to automatically derive consistent models for a given domain specification. Several generators are
based on precise foundations offered by backend logic solvers (like SAT solvers [LP10; ES03] or
SMT solvers [MB08]). These tools excel at finding inconsistencies (if they exist) by interpreting
domain specifications as a logic problem, but they can only derive small consistent models.
Moreover, they fail to derive a diverse set of models [JGS13; Sem+20c], which restricts their use

55



4. Multiplicity reasoning for consistent graph model generation

in practical testing scenarios.
Alternatively, logic reasoning or search-based techniques can be lifted directly on the level of

graphs [SSB20; SSB17; SV17] for model generation purposes. These approaches scale better with
respect to the size and diversity of the derived models, but they may fail to reveal inconsistencies
in specifications.

Finally, the realistic nature of synthetic models can also be important in test generation
scenarios. For example, realistic test models used for autonomous cars represent real test
environments [Ben+18; Iqb+15] while unrealistic test cases (e.g. obscure traffic situations) are
considered as false positives. Failures caused by realistic scenarios are more severe, as they have
more chance to happen on real workload. Several examples in testing software-intensive CPSs
[Ben+18; ACG17; Edu+18; Iqb+15; SSB17; SSB20] highlight this realistic aspect. Furthermore,
the usability of automatically generated tests may be hindered by test cases that are not realistic
(i.e., strange and difficult to comprehend for developers) [HM19].

Problem statement To increase the realistic nature of models, one needs more refined control
over the structure of the auto-generated models. For example, partial snapshots [FSC12; SFC12]
define model fragments that need to be extended by the model generator, thus it defines the
expected initial structure of each models. Furthermore, type scopes [Jac02] allow to precisely
define the required number of newly generated elements (per type/class), thus focusing the
generation process on more relevant instance models of the target domain.

While logic solver-based model generators support various scope constraints, they have
severe scalability issues and they fail to generate complex graphs (without isolated nodes or
star structures) with more than 50-70 nodes for complex domains [SNV18]. The search-based
approach [SSB20; SSB17] can generate a large number of simple graph models with fine-grained
type distributions, but it is unable to derive large and connected consistent models. Finally, the
graph solver [SNV18] can derive large and connected models, but it only allows to cap the total
size of the model, and thus it is unable to fine-tune the models along type scopes.

Contributions In order to improve the scalability and usefulness of automated model genera-
tion, we propose a novel technique that combines the advantages of partial model refinement
techniques [SV17] with numeric reasoning on model scopes. In particular,

• We define a mapping of structural and well-formedness constraints into numeric constraints
that can be evaluated on scoped partial models.

• We use existing numerical solvers (i.e. IP and LP solvers) to efficiently guide the generator
process.

• We extend an open source model generator [SNV18] with type scope support and integrate
various IP and LP solvers to provide a software prototype tool.

• We evaluate the effectiveness of the approach on numerous case studies including a
running example of a complex design space exploration challenge [Her+17] introduced by
researchers at NASA Jet Propulsion Lab.

The current chapter builds upon but substantially extends past research results in [SNV18;
Var+18; Sem+20c]. More specifically, the introduction and handling scope constraints are
novel conceptual results of the current chapter. In order to maintain the favorable theoretical
properties (e.g. completeness, diversity) of the generic model generation framework formally
proved in [Var+18; Sem+20c], the refinement calculus is extended here to incorporate scopes.
The prototype implementation builds on and extends [SNV18; Sem+19] by integrating various
numerical solvers into the decision procedure. Finally, the experimental evaluation shows how
novel results improve scalability and the realistic nature of models wrt. existing work.

56



4. Multiplicity reasoning for consistent graph model generation

Added value With multiplicity reasoning, graph generators can be configured by numeric
constraints to focus model generation on the relevant fragment of models. Although a single
metric cannot ensure the realistic nature of models, but ensuring the realistic distribution of model
elements were found to be useful in [SSB20] as it filters out a wide range of surely unrealistic
models. As such, automatically synthesized corner-cases will have higher practical relevance
(e.g. test scenarios in autonomous driving will investigate relevant traffic situations).

With the help of numerical reasoning, graph generators will be able to measure and efficiently
control the quantity of nodes. This significantly improves the performance of existing graph
solver algorithms. Moreover, it enables a practical iterative workflow for test generation where
initially, one can start with general scopes which are gradually refined to grow larger consistent
models. Finally, by adhering to the refinement calculus, the generator continues to provide
favorable properties such as consistency, completeness or diversity (but the in-depth investigation
of such properties is out of scope for the work).

The contents of this chapter are based on the journal paper [j1].

4.1 Models and partial models

The computational design synthesis of interferometry mission architectures has been introduced
in [Her+17] as a complex challenge for early mission planning for space missions of NASA where
a designated architecture consists of collaborating satellites (of different size and capabilities) and
radio communication between them. Each mission architecture involves multiple spacecrafts,
which imposes an especially challenging design task. The authors of [Her+17] suggested a tech-
nique to automatically enumerate promising design candidates with respect to the requirements,
technical and resource constraints, and mission objectives. We adopt this case study, described
in more detail in Section 2.1, as a running example throughout this chapter.

In this section, we recall foundations of domain-specific modeling languages (DSLs) and
graph-based instance models formalized as partial models using relational logic enhanced with
integer linear constraints from Section 2.3. We also illustrate these concepts in the context of
the case study.

As a technical foundation for domain modeling, we use EMF [Ste+09] metamodels and
Viatra well-formedness constraints [VB07; Ujh+15], which are also used in industrial tools
(including e.g., Capella, Artop, Yakindu, Papyrus, etc.) as well as in [Her+17]. Conceptually, the
graph generation approach could be applied on other modeling formalisms too, e.g. UML Class
Diagrams for defining the types and Object Constraint Language (OCL, [OCL]) for defining
constraints as in [SAB09; SSB17].

4.1.1 Scoped partial models

In this paper, we represent architecture models using the 3-valued scoped partial models intro-
duced in Section 2.3 as an extension of partial models [SNV18]. We combine two techniques
to capture uncertainty in a partial model. First, 3-valued logic is used to explicitly represent
uncertain structural properties of models with a third ½ (unspecified or unknown) truth value
(besides 1 and 0, which stand for true and false) in accordance with [RSW04; Var+18; SV17].
Secondly, quantitative information is attached to the partial model to precisely represent the
known (or required) size of the models. Later, we use partial models as states of model generation
to represent intermediate solutions with uncertain parts denoted with truth-value ½ and its size.

As a difference from the general notations from Section 2.3, in this chapter, we will only
consider linear inequalities over the number of objects ε̂(?) = ?̂ represented by individuals

57



4. Multiplicity reasoning for consistent graph model generation

? ∈ O% of a partial model % = 〈O% ,I% ,S% 〉. Formally, in the signature 〈Σ, Γ, U〉, we will set
ΓC = ΓR = ΓF = ΓX = ∅ and let Γ = {ε}.

We will rely on the linear inequality variables Ĝ ∈ X% defined for each individual G ∈ O% of
the partial model % to encode lower ! ≤ C8 and upper C8 ≤ * type scope bounds. In contrast
with including the class symbol C8 ∈ ΣC that is the subject of the scope constraints (i.e., C8 ∈ ΓC),
this approach reduces the number of variables and the number of inequalities in the system of
linear inequalities S% . As a result, linear and integer programming solvers will be able to reason
about S% more efficiently.

From a formal perspective, the resulting partial modeling technique implements predicate
abstraction [FFJ12; SV17] on graph model along with counter abstraction [BCK01; KK08] on the
nodes of the graph model.

Example 4.1 Fig. 4.1 shows three partial models. Truth values of class predicates are denoted
by labels on nodes (missing labels correspond to 0 values). Reference predicates with 1 and
½ values are denotes as solid and dashed arrows, respectively. Nodes with Dashed borders
correspond to ½ values of the existence ε predicate. Uncertain equivalences are shown with
dashed ∼ loops, but to reduce clutter, certain self-equivalences are not depicted. Thus, multi-
objects have dashed borders and dashed ∼ loops and concrete objects are shown with solid
borders.
In %0 (on the left side of Fig. 4.1), the multi-object new3U (with uncertain existence and self-
equivalence) is certainly of type Cube3U, but not of type CommSubsys.
Partial models %0 and %1 define two systems of linear inequalities (S%0 and S%1 respectively)
over the same three variables: �new3U, �newX and �newUHF. In S%0 , the linear equation �new3U +�newX + �newUHF = 10 ensures that %0 represent instance models with exactly 10 objects. A
potential variable assignment : : �new3U ↦→ 4, �newX ↦→ 3,�newUHF ↦→ 3 is a possible solution of
both S%0 and S%1 , and represent models with 4 3U, 3 X and 3 UHF objects. As S%1 contains
more constraints than S%0 , S%1 � S%0 is holds trivially. However, S%0 � S%1 is not true as
: ′ : �new3U ↦→ 10, �newX ↦→ 0,�newUHF ↦→ 0 is a solution for S%0 but not for S%1 .

4.1.2 Refinement and concretization of PMs

We carry out model generation along a sequence of refinement steps (Definition 2.24) that derive
new partial models by increasing their size but gradually reducing the level of uncertainty in
each model while continuously checking (an approximated version of) well-formedness and
scope constraints.

During refinement, the linear inequality systems are also refined with respect to the entail-
ment relation. Informally, during the refinement of S% into S& , it (i) may split some variables
into the sum of multiple variables (e.g., all occurrences of a variable Ĝ in S% are replaced with
Ĝ1 + Ĝ2 + Ĝ3 in S& ), and (ii) it may induce stricter constraint over the variables (e.g., Ĝ ≤ 3 is
refined to 1 ≤ Ĝ ≤ 2).

Example 4.2 Figure 4.1 depicts three refinements %0 < %1, %1 < %2, and %2 < %3. %0 and %1
have the same object set (O%0 = O%1 ) and graph structure. Therefore, the refinement relation
ref 1 ⊆ O%0 × O%1 is the identity relation ref 1 = {〈?, ?〉 | ? ∈ O%0}. Compared to S%0 , S%1

contains an additional linear equation. Every solution of S%0 is also a solution of S%1 , which
ensures %0 < %1.
The refinement relation ref 2 ⊆ O%1 ×O%0 maps new3U, newX, newUHF to the objects in %1 with
the same identifiers, while we also have 〈new3U, G1〉 and 〈newUHF, G2〉 ∈ ref 2. The objects
G1 and G2 were split from new3U and newUHF, respectively. To obtain S%2 , we replaced each
occurrence of �new3U and �newUFH with �new3U + Ĝ1 and �newUFH + Ĝ2. Furthermore, the constant
1 replaces occurrences of Ĝ1 and Ĝ2, because Ĝ1 = Ĝ2 = 1 (G1 and G2 are concrete objects). As

58



4.
M
ultiplicity

reason
in

g
for

con
sisten

t
graph

m
odel

gen
eration

new3U

CommElement= 1 
Satellite=1 
Cube3U=1

newX

CommSubsys= 1 
XComm=1

newUHF

CommSubsys= 1 
UHFComm= 1

~

subsys

~
target

subsys

target

~
target

target

%0, %1

<
new3U

CommElement= 1 
Satellite=1 
Cube3U=1

newX

CommSubsys= 1 
XComm=1

newUHF

CommSubsys= 1 
UHFComm= 1

x2

CommSubsys= 1 
UHFComm= 1

x1

CommElement= 1 
Satellite=1 
Cube3U=1

~

subsys

~
target

subsys

target
~
target

target

target

su
bs

ys

subsys

su
bs

ys

%2

<
x3

CommElement= 1 
Satellite=1 
Cube3U=1

newX

CommSubsys= 1 
XComm=1

newUHF

CommSubsys= 1 
UHFComm= 1

x2

CommSubsys= 1 
UHFComm= 1

x1

CommElement= 1 
Satellite=1 
Cube3U=1subsys

~
target

subsys

target
~
target

target

target

su
bs

ys

subsys

su
bs

ys

%3

S%0 : �new3U+�newX+�newUHF = 10 (#n)

S%1 : �new3U+�newX+�newUHF = 10

5 ≤ �newX+�newUHF (sp1)�new3U ≤ �newX+�newUHF (sp2)�newX+�newUHF ≤ 2�new3U (sp3)

4 ≤ �new3U ≤ 4, 0 ≤ �newX ≤ 6,

0 ≤ �newUHF ≤ 6

}
(sa)

S%2 : �new3U+�newX+�newUHF = 8

4 ≤ �newX+�newUHF�new3U ≤ �newX+�newUHF�newX+�newUHF ≤ 2�new3U + 1

3 ≤ �new3U ≤ 3, 0 ≤ �newX ≤ 5

0 ≤ �newUHF ≤ 5, Ĝ1 = 1, Ĝ2 = 1

S%3 : �newX+�newUHF = 7

4 ≤ �newX+�newUHF�newX+�newUHF ≤ 3

0 ≤ �newX ≤ 5, 0 ≤ �newUHF ≤ 5

Ĝ1 = 1, Ĝ2 = 1, Ĝ3 = 1

Scope propagation (5)
and analysis (6)

Decision (4): Add G1 and G2
and connect G1 to G2

Decision (4): Replace multi new3U with concrete G3
Object scope analysis (6): detect inconsistency

7 ≤ 3 is UNSAT→ backtrack

Figure 4.1: Scoped partial models and their refinements. Linear equation systems were simplified by carrying out substitutions for conciseness.

59



4. Multiplicity reasoning for consistent graph model generation

there are no new linear equations, S%2 is otherwise equivalent to S%2 .
In %2 < %3, G3 replaces the multi-object new3U with G3, i.e., 〈new3U, G3〉 ∈ ref 3, while all other
objects of %3 are mapped to the object with the same name in %2.

As shown in Proposition 2.26, refinement of regular scoped partial models is transitive, i.e.,
if %1 < %2 and %2 < %3 with the refinement relations ref 1 ⊆ O%1 × O%2 and ref 2 ⊆ O%2 × O%3 ,
then %1 < %3 with the refinement relation ref 1 ◦ ref 2. Hence, after a chain of refinements
%0 < %1 < · · · < " , we may obtain a concrete model " . Such a refinement chain will be
constructed during model generation.

4.1.3 Predicate evaluation over partial models

As a means of representing metamodel (MM) and well-formedness (WF) constraints, we will
use the logic for scoped partial models introduced in Definition 2.29. Note that predicates can
be approximately evaluated directly on partial models by predicate rewriting [SV17] without
materializing all potential concrete models.

In the following, we will consider a theory T = 〈3, E〉 for a signature 〈Σ, {ε}, U〉 encoding
MM and WF constraints, where the error predicates i ∈ E contain no free variables, i.e., every
variable is bound by an existential quantifier ∃. Scope constraints associated with a partial model
% = 〈O% ,I% ,S% 〉 over 〈Σ, {ε}, U〉 will be encoded by the linear inequalities S% .

Our model generation approach can avoid inconsistent partial solutions during model gen-
eration by approximation of predicates, so the consistency can be checked before a concrete
instance model is obtained.

4.1.3.1 Approximation of logic predicates

In [SNV18; Var+18], we defined over- and under-approximations of predicates over partial models
to drive the model generation process along meaningful refinements. If an error predicate i is
surely satisfied in a partial model % (JiK%

/
= 1, under-approximation of errors), then no concrete

instance model" obtained from % by a refinement % < " can be structurally consistent [Var+18].
Thus, partial model % can be safely dropped from the set of candidate intermediate solutions
without discarding any valid instance models, and model generation needs to continue along a
different refinement chain.

Theorem 4.1 (Forward refinement of predicates) Let i be a logic expression without
free variables and let % and & be regular scoped partial models, where % < & .

• If JiK% = 1, then JiK& = 1.
• If JiK% = 0, then JiK& = 0.

One can establish a dual over-approximation property for the validity of & , which ensures
that no valid model will be marked as invalid (and vice versa):

Theorem 4.2 (Backward refinement of predicates) Let i be a logic expression without
free variables and let % and & be regular scoped partial models, where % < & .

• If JiK& = 1, then JiK% < 1.
• If JiK& = 0, then JiK% < 0.

4.1.3.2 Approximation of scope constraints

In scoped partial models, analogous properties hold for the constraints imposed on multi-objects
by object scopes S% . For that purpose, we introduce the notation #½E JiK%/ to capture the number

60



4. Multiplicity reasoning for consistent graph model generation

of concrete objects and multi-objects thatmay satisfyi . Moreover, #1EJiK%/ represents the number
of those that must satisfy i . In a concrete model, these two formulas coincide, and they are
equal to the number of concrete objects that satisfy i .

Definition 4.3 (Number of matching objects) Given a logic formula i (D1, . . . , D: , E) and
variable binding / : {D1, . . . , D: } → O% (which only excludes E),

#½E JiK
%
/ B

∑
{Ĝ8 | G8 ∈ O% , JiK%/,E ↦→G8

≥ ½}

denotes the sum of scope variables Ĝ8 associated with objects G8 that may satisfy i .
Analogously,

#1EJiK
%
/ B

∑
{Ĝ | G ∈ O% , JiK%/,E ↦→G = 1}

is the sum of scope variables associated with objects that surely satisfy i .

For example, if {G1, . . . , G<} = {G8 ∈ O% | JiK%
/,E ↦→G8

≥ ½} are the objects that possibly satisfy
i , then the linear inequality ! ≤ Ĝ1 + · · · + Ĝ< ≤ * can be written as ! ≤ #½E JiK%/ ≤ * .

Note that this notation differs from the count aggregation #[W (Ē1, . . . , ĒU (W ) )]%/ notation
introduced in Definition 2.27. In particular, the number of matching objects can be calculated
for any formula i , while in count aggregation, W must be a numerically tracked symbol from Γ.
Thus, the introduction of #½E JiK%/ and #1EJiK%/ notations allow us to define constraints about the
number of objects represented in the partial model % even after setting Γ = {ε} to reduce the
size of S% .

However, if we were to add some symbol W other than ε to Γ, we could indeed add constraints

#1E1JW (E1, E2, . . . , EU (W ) )K
%
/ ≤ #[W (∗, E2, . . . , EU (W ) )]%/ ≤ #½E1JW (E1, E2, . . . , EU (W ) )K

%
/

for any variable binding / : {E2, . . . , EU (W ) } → O% to S% without shrinking the set of possible
concrete refinements of % , since in concrete models, only surely existing objects can contribute
to the match set of W .

Example 4.3 In %2 in Fig. 4.1, #½B J∃2 : subsys(B, 2)K%2 = �new3U + Ĝ1 is the linear expression for
the number of objects that may have an outgoing subsys reference. #1B J∃2 : subsys(B, 2)K%2 = Ĝ1
is the number of objects that surely have an outgoing subsys reference. (The empty variable
binding / = ∅ was omitted from the notation for conciseness.)

Now we can evaluate type scope bounds on partial models checking linear inequalities on
the objects scopes in a partial model % .

Definition 4.4 (Scope (in)consistency of a partial model) Given a regular scoped par-
tial model % and a set of type scope bounds {!8 ≤ C8 ≤ *8 | 8 = 1, . . . ,<}, % is scope
inconsistent if there exists a type scope bound !8 ≤ C8 ≤ *8 such that S% � #½E JC8 (E)K% < !8
orS% � #1EJC8 (E)K% > *8 . % is scope consistent ifS% � #1EJC8 (E)K% ≥ !8 andS% � #½E JC8 (E)K% ≤
*8 for all 8 = 1, . . . ,<.

Now we can over- and under-approximate scope constraints on partial models and maintain
scope consistency during model generation as follows:

Theorem 4.5 (Forward refinement of scopes) Let i be a logic expression with free vari-
ables + , % and & regular scoped partial models with % <ref & , / : + → O% and . : + → O&

variable binding with 〈/ (E), . (E)〉 ∈ ref for all E ∈ + , and !,* ∈ ℤ. Then the following

61



4. Multiplicity reasoning for consistent graph model generation

implications hold:

S% � #½E JiK%/ < ! =⇒ S& � #½E JiK
&

.
< !, (i)

S% � #1EJiK%/ > * =⇒ S& � #1EJiK
&

.
> * , (ii)

i.e., (i) when objects that may satisfy i violate a lower bound ! in % , they also violate it in
any refined partial model & , and (ii) objects that must satisfy i similarly carry forward the
violation of the upper bound* .

Therefore, if a partial model % is scope inconsistent, it can be safely dropped from the set of
potential intermediate solutions, as all of its refinements remain scope inconsistent.

Dually, if & is scope consistent % < & , then % cannot be scope inconsistent. This statement,
formalized below, is the over-approximation of validity for scope constraints.

Theorem 4.6 (Backward refinement of scopes) Let i be a logic expression with free
variables + , % and & regular scoped partial models with % <ref & , / : + → O% and . : + →
O& variable binding with 〈/ (E), . (E)〉 ∈ ref for all E ∈ + , and !,* ∈ ℤ. Then the following
implications hold:

S& � #1EJiK
&

.
≥ ! =⇒ S% 2 #½E JiK%/ < !,

S& � #½E JiK
&

.
≤ * =⇒ S% 2 #1EJiK%/ > * .

The forward and backward refinement properties enable the generation of structurally and
scope consistent models along partial model refinements, where WF and scope constraints are
approximately checked. Theorems 4.1–4.6, as discussed in Section 4.2.6, ensure the correctness
and completeness of the process.

4.2 Model generation with scope reasoning

In this section we exploit numerical information present in object scopes of PMs to efficiently
generate large instance models that satisfy type scope bounds, as well as structural and WF
constraints. We combine techniques from advanced graph query processing, SAT solving and
integer programming to tackle the scalability problems of existing graph generation approaches.

As the core conceptual contribution of the current paper, we combine the evaluation of
relational constraints and numerical reasoning with object scopes by propagating information
between 3-valued logic interpretation and objects scopes of the partial model. The intuition
behind this idea is that while constraints expressed as object scopes are not as expressive as those
captured in relational logic, dedicated numerical solvers allow earlier detection of constraint
violations by considering the global effects of all constraints on the number of objects in the
generated instance models at the same time. Therefore, the evaluation of the original WF
constraints on the partial models and the scope analysis are complementary to each other.

As a summary, object scopes will allow early detection of partial models that cannot be
completed to an instance model due to the inappropriate number (e.g., too few or too many) of
objects, while WF constraint evaluation will enforce more complex structural validation rules.

4.2.1 Model generation process

We propose a model generation process (shown in Fig. 4.2) based on partial models with object
scopes that can exploit the numeric information present in scoped partial models. The generation
starts from an initial partial model, which is gradually refined until it obtains a concrete model
satisfying the generation objectives defined by the number of required objects and the WF

62



4. Multiplicity reasoning for consistent graph model generation

Model generator

(9) State space exploration

(4) Decisions and
unit propagations

(5) Scope
propagations

(6) Object scope analysis (7) Constraint
evaluator

(8) State
coderType hierarchy IP LP

(1) Initial partial model
with object scopes

(2) Type scope bounds

(3) Domain specification
(Metamodel + WF)

(10) Generated model

current
PM

refined 3-valued
interpretation

refined
scopes

back-
track?

heuristic
value

refined existence
and equivalence

back-
track? valid?

isomorphic
state?

Figure 4.2: Block diagram of the model generator. Blocks interacting with object scopes are shaded for
emphasis.

constraints. Thus, the generator explores the state space formed by partial models that are
reachable by refinement, which ensures that isomorphic states are explored only once. Our
generator has the following components:

• The initial partial model (1) is the starting point of the generation, which express type scope
constraints as object scopes. It is either set to the most general (maximally underspecified)
partial model or to a partial snapshot model provided by an engineer which is to be
extended by the generator. The other inputs of the generator are the type scope bounds (2)
and the structural and WF constraints (3) to be satisfied by the generated models.

• Refinement operators include decision rules, unit propagation rules and scope propagator
rules to obtain new PMs from already discovered ones.

– Decisions add new information to the PM and unit propagations enforce the necessary
consequences of decisions by evaluating structural and WF constraints using the
3-valued interpretation. For decisions and unit propagations, we reuse the set of
operators (4) defined by the GraphSolver (GS) [SNV18] (which were proved to be
sound and complete).

– Scope propagators (5) restrict object scopes according to type scope bounds, structural,
and WF constraints. This gives an opportunity for numerical reasoning with the
new object scope information.

• Object scope analysis (6) performs numerical reasoning using state-of-the-art integer
programming (IP) and linear programming (LP) techniques on object scopes. The results
of numerical reasoning are fed back to the partial model and the best-first search strategy.

• 3-valued logic semantics (7) are exploited to over- and under-approximate WF constraint vi-
olations. PMs that cannot be repaired by refinement (i.e., which surely violate a constraint)
are discarded by backtracking.

– The constraint evaluation component uses an efficient, incremental graph query
engine [Ujh+15; Var+16] to ensure the scalability of this step.1

– Unsatisfiable objects scopes, which are caused by type scope or WF constraint
violations that cannot be repaired by refinement, are discarded by backtracking
according to Theorems 4.1–4.6. Detecting these violations as early as possible is
crucial for reducing the traversed state space.

• Isomorphic PMs reached by different refinements are detected by state coding (8) based on
graph shapes [Ren06], which ensures that isomorphic states are explored only once.

1The incremental graph query engine requires in-place updates to the partial model, which is (technologically)
limited to be single-threaded. Nevertheless, it is possible to parallelize incremental query evaluation [Szá+14;
Ben+15], as well as to maintain several partial models for parallel state space exploration [Abd+14]. Integrating these
improvements to the solver is in the scope of future work.

63



4. Multiplicity reasoning for consistent graph model generation

• Heuristic best-first search (9) combined with backjumping and random restarts preferen-
tially investigates PMs that can be quickly refined into valid concrete models. Object scope
analysis allows selecting such PMs more accurately than existing approaches that only
rely on 3-valued interpretation.

• When a structurally (Definition 2.32) and scope consistent (Definition 4.4) concretemodel (10)
is found, it is recorded as output. The generation is either terminated, or (if additional
models are desired) the search is resumed after backtracking (as if the found solution
was invalid). For the collected outputs, the solution management features of GraphSolver,
which can ensure the diversity of the models [Sem+20c], can be leveraged.

Next, we discuss the key novel components of our generator in more details.

4.2.2 Initial scoped PM

Model generation starts from an initial partial model %init , which is a common abstraction of all
possible concrete instance models of the metamodel. In %init ,

• there is an object new8 for each non-abstract class C8 , i.e., O%init = {new8 | C8 ∈ Σ};
• for each C8 , new8 is multi, i.e., I%init (ε) (new8) = ½ and I%init (∼)(new8 , new8) = ½; and
• I%init (C8) (new8) = 1 (new8 is an instance of C8 ).

Other class C9 and reference R: predicates are set to 1 or 0 wherever required by type hierarchy
and conformance constraints. Otherwise they are set to ½.

The object scopes S%init in the initial PM introduce a variable �new8 for each class C8 , which
allows expressing type scope bounds directly.

If model generation extends an initial partial snapshot, it can also be incorporated into %init .
For each given object G8 , S%init contains the equality Ĝ8 = 1 to mark G8 as a concrete object with
exactly one instance. Interpretation of type and reference predicates between given objects are
set in accordance with the initial partial snapshot, while reference predicates leading between
new objects are ½.

Example 4.4 The partial model %0 in Figure 4.1 is a fragment of the initial partial model
%init for generating instances of the satellite metamodel in Figure 2.1. The multi-objects
new3U, newX, and newUHF correspond to the classes Cube3U, XComm, and UHFComm. In
S%0 ⊇ {�new3U +�new3U +�new3U = 10}, the linear equation (marked as #n in Figure 4.1) encodes
that models with exactly 10 objects shall be generated.

4.2.3 Scope propagation

Scope propagation refines the partial model % = 〈O% ,I% ,S% 〉 into a new partial model % < & =

〈O% ,I% ,S% ∪(〉, where ( is a set of linear inequalities deduced from % , type scope bounds, as well
as structural and WF constraints. Because the inequalities are necessary consequences of the
constraints, every consistent concrete model % < " , satisfies them. Therefore each consistent
instance model" is also a refinement of & .

Table 4.1 summarizes the rules used to deduce linear inequalities implied by type scope
bounds and structural metamodel constraints from the partial model. In the table, the relation ≤
refers to the usual implication order 0 ≤ ½ ≤ 1 of truth values (and not the refinement order <).

Example 4.5 Fig. 4.1, the linear equations (sp1-sp3) in S%1 were obtained from %0 and the
type scope bound 5 ≤ CommSubsys by scope propagation. The lower type scope bound
CommSubsys implies (sp1). By applying the containment hierarchy, lower and upper bound
rules to the containment (CON) reference subsys [1..2] according to the multiplicity (MUL)
bounds defined in Fig. 2.1, yielding the linear equations (sp2) and (sp3)

64



4.
M
ultiplicity

reason
in

g
for

con
sisten

t
graph

m
odel

gen
eration

Table 4.1: Scope propagation rules for type scope bounds and structural constraints

Constraint / class diagram Description Linear inequality

!8 ≤ C8

Lower type scope bound. There must be at least !8 instances of C8 in the concrete
model. Hence, objects that may be C8 (I% (C8) (G) ≥ ½) must represent at least !8
concrete objects.

!8 ≤ #½E JC8 (E)K%

C8 ≤ *8

Upper type scope bound. There may be at most*8 instances of C8 in the concrete
model. Hence, objects that must be C8 (I% (C8) (G) = 1) may represent at most*8

concrete objects.
#1EJC8 (E)K% ≤ *8

A B
[_..k] ref

[m.._] refinv

Upper bound with inverse lower bound. Each A may be connected to at most
: B instances by the reference ref, and each B must be connected to at least< A
instances by the inverse refinv. Hence, there can be at most : B instances for each
possible< A instances.

< · #1DJB(D)K% ≤ : · #½E JA(E)K%

A B
[m.._] ref

Lower bound. Each A instance must be connected to at least< B instances by
the reference ref. Hence, for each existing A instance, potential targets of ref must
represent at least< concrete objects.

< ≤ #½E Jref(D, E)K%D ↦→G

for all G ∈ O% ,I% (ε) (G) = I% (A) (G) = 1

B

[_..k1] ref1

An

A1

…

[_..kn] refn

Containment hierarchy, upper bound. Let A1, . . . ,A= be the possible containers
of B. For every 8 = 1, . . . , =, instances of the class A8 can contain at most :8 instances
of B (infinite upper bounds :8 = ∗ are replaced by a suitably large finite constant
 ). Hence, for each possible instance of each A8 , there may be no more than :8
instances of B.

#1DJB(D)K% ≤
=∑
8=1

:8 · #½E JA8 (E)K%

B

[m1.._] ref1

An

A1

…

[mn.._] refn

Containment hierarchy, lower bound. Let A1, . . . ,A= be the possible containers
of B. For every 8 = 1, . . . , =, each instance of the class A8 must contain at least
<8 instances of B. Hence, for each instance of each A8 , there must be at least<8

possible instances of B.

=∑
8=1

<8 · #1DJA8 (D)K% ≤ #½E JB(E)K%

65



4. Multiplicity reasoning for consistent graph model generation

Other WF constraints which have numerical consequences can also be translated to object
scopes by adding object scope constraints corresponding to lower and upper bounds of the
number of objects allowed by the constraint.

Example 4.6 Consider the error predicate i8(4) B
(
∃B : subsys(4, B) ∧ KaComm(B)

)
∧

¬SmallSat(4) ∧ ¬GroundStation(4). Because subsys is a containment (CON) reference, i8
enforces that each KaComm instance be contained in a SmallSat or a GroundStation. Due to
the upper multiplicity (MUL) bound of 2, for each SmallSat or GroundStation, there may be
no more than 2 KaComm instances. We obtain the following scope propagation rule as the
linearization of i8:

#1DJKaComm(D)K% ≤ 2 · #½E JSmallSat(E) ∨ GroundStation(E)K% .
In our current implementation, the user needs to manually provide linear inequality versions

of well-formedness constraints to exploit them during object scope propagation. A higher level
of automatization seems feasible (similarly as in [YBP07]) and is in the scope of future work.

Alternatively, predicate symbols corresponding to the (error) predicates can be added to the
set of numerically tracked symbols Γ of the signature 〈Σ, Γ, U〉 and to the theory T = 〈3, E〉. This
allows leveraging the reasoning techniques from Section 2.3 by either automatically generated
or user provided scope propagation rules. We take this approach in Chapter 6 for the WCET
analysis of query based monitor programs in embedded systems.

4.2.4 Object scope analysis

Object scope analysis is responsible for numerical reasoning with object scope constraints,
which guides model generation and refines the interpretation I% . The refined relations may
allow applying further unit and scope propagation operators, which in turn are opportunities
for further scope analysis. The analysis requires efficient maintenance and solution of linear
constraints.

Linear constraint maintenance As the size of the partial model % grows, the number of
variables and constraints in S% may also grow. Two techniques reduce the size of S% to improve
analysis. Firstly, concrete objects always stand for a single object (S% � Ĝ = 1 if G is concrete).
Instead of explicitly storing coefficients of a variable Ĝ for each concrete object and linear
constraint, occurrences of Ĝ are replaced with the constant 1. Thus, the number of variables
equals to the number of multi-objects, which usually does not grow during model generation.

Secondly, redundant linear inequalities are eliminated to prevent the number of scope
constraints from growing indefinitely, exploiting the following two properties: (i) In our decision
and scope propagation rules [SNV18], no new multi-objects are added to the partial model. (ii) In
our object scope analysis rules, the coefficients of multi-object variables only depend on the
meta-model. This results in many pairs of constraints of the form !1 ≤ U1Ĝ1 + · · · + U=Ĝ= ≤ *1

and !2 ≤ U1Ĝ1 + · · · + U=Ĝ= ≤ *2, which can be replaced by max{!1, !2} ≤ U1Ĝ1 + · · · + U=Ĝ= ≤
min{*1,*2}.

Numerical reasoning Numerical reasoning carried out by object scope analysis (i) discovers
refinements of the existence ε and equivalence ∼ relations implied by the object scopes, (ii) initi-
ates backtracking on unsatisfiable object scopes, and (iii) calculates a heuristic for guiding the
search based on the number of objects required to finish the model.

Scopes are analyzed to find lower and upper bounds of object scope variables Ĝ associated
with each object G ∈ OG . If the lower bound is positive (S% � Ĝ ≥ 1), G represents at least one
object and cannot be removed from % . We set I% (ε) (G) = 1 to record this fact. If the upper bound
is 1 (S% � Ĝ ≤ 1), G represents at most one object, implying I% (∼)(G, G) = 1. Lastly, an upper
bound of 0 (S% � Ĝ ≤ 0) means G can be removed from % .

66



4. Multiplicity reasoning for consistent graph model generation

Table 4.2: Scope analysis methods

Type scope Structural Other WF

Type hierarchy  # #

IP solver    

LP solver    

Legend: # = not supported,  = supported

If a contradiction is detected when obtaining variable bounds, there is no instance model
represented by the scoped PM % . The generator discards % and backtracks.

Otherwise, the sum of lower bounds is used as a heuristic in best-first search to approximate
the number of decisions still required to obtain a valid instance model. This heuristic prefers
the creation of smaller models when possible. However, due to the randomized state-space
exploration, it does not guarantee models of minimum size.

Example 4.7 In Fig. 4.1, the linear equations (sa), which represent feasible lower and upper
bounds of the object scopes, were obtained by scope analysis of S%1 \ {(sa)}.
Scope analysis of %3 detects an inconsistency (highlighted in red in Fig. 4.1) caused by the
unsatisfiable object scopes S%3 . No refinement of %3 is a valid instance model. Therefore %3
can be safely discarded by backtracking.

4.2.5 Scope analysis methods

We propose three methods for the reasoning, which are shown in Table 4.2. The Type hierarchy
based analysis can only handle linear equations derived from type scope bounds. It is a quick
preliminary step that can detect some contradictions early without invoking an external solver.
Analysis with Integer Programming (IP) and Linear Programming (LP) solvers is considerably
more precise, and handles any linear equations. However, the invocation of the external solver
may be costly, especially in the case of IP, which is NP-complete. In Section 4.3, we compare the
effectiveness of these approaches.

Type hierarchy based scope analysis analyses linear equations coming from type scope
bounds, which are always of the form !8 ≤ Ĝ1 + · · · + Ĝ: ≤ *8 (Table 4.1). Exploiting that
all variables in S% are nonnegative, the inequalities !8 ≤ Ĝ1 + · · · + Ĝ: ≤ *8 and ! 9 ≤ Ĝ1 +
· · · + Ĝ: + · · · + Ĝ< ≤ * 9 , which are formed when C8 is a subtype of C9 , can be replaced with
! 9 ≤ Ĝ1 + · · · + Ĝ: ≤ min{*8 ,* 9 } and max{!8 , ! 9 } ≤ Ĝ1 + · · · + Ĝ: + · · · + Ĝ< ≤ * 9 . This process
is performed for each pair of compatible inequalities until no more bounds can be tightened.
Contradiction is detected when the lower bound of some inequality becomes larger than the
upper bound.

Integer programming solvers are used for scope analysis by translating the object scope
constraints into an IP problem and repeatedly solving for lower and upper bounds of variables.
Formally, for all object G ∈ O% , the problems

Gmin = min Ĝ , Gmax = max Ĝ ,
s.t. S% , s.t. S% ,

∀~ ∈ O% : ~̂ ∈ ℕ, ∀~ ∈ O% : ~̂ ∈ ℕ

are solved and the inequality Gmin ≤ Ĝ ≤ Gmax is added to S% . Results of solver calls are cached
to reduce invocations.

Linear programming. By replacing the set of natural numbers ℕ with the nonnegative
reals ℝ≥0, the LP relaxation of the problem is obtained. In contrast with IP, LP can be solved in

67



4. Multiplicity reasoning for consistent graph model generation

polynomial time. However, the obtained bounds for scope variables may not be as accurate, and
opportunities for backtracking or refinement of the ε and ∼ predicates may be detected later.
In order to detect these opportunities as early as possible, we rely on the fact that the number
of object represented by a multi-object is always an integer. When the relaxation produces an
inexact solution with non-integer Gmin or Gmax , the solution is rounded to assert the constraint
dGmine ≤ Ĝ ≤ bGmaxc.

4.2.6 Correctness and completeness

As the main benefit of 3-valued PMs, a multi-object may represent multiple separate, unequal
concrete objects in an instance model. As such, even sets of very large instance models can be
abstracted by a small PM, which enables the model generator to use a concise representation of
their state as a scoped partial model.

Based on Section 4.1.3, logic constraints can be approximately evaluated over intermediate
solutions. Forward- and backward approximation theorems Theorems 4.1 and 4.5 ensure that if a
partial model violates a WF or scope constraint, all refinements of that intermediate solution will
also surely violate it, thus it can be safely discarded. WF and scope constraints are also directly
evaluated on all finished (concrete) models, thus ensuring the correctness of the approach, i.e. all
generated models are instances of the metamodel, and satisfy all WF and scope constraints.

Additionally, according to Theorems 4.2 and 4.6, if there is a valid concretization of an
intermediate model, the partial model will not be discarded due to WF and scope constraint
violations. In a bounded scope, all valid partial models will be considered [Var+18]. Therefore,
the approach is complete within a bounded scope (i.e., when models up to a finite size are sought)
and it will explore all valid solutions.

While multiplicity reasoning can greatly increase the performance the model generator, the
descriptive power of ordinary PMs is limited to linear constraints. This limits the multiplicity
reasoning on simple scopes, but ensures that the numerical problems can be efficiently solved in
each step of model generation.

4.3 Evaluation

We carried out an experimental evaluation of generating consistent instance models with multi-
plicity reasoning provided by object scopes to address the following research questions:

RQ1 How effective are the different scope analysis techniques for model generation in terms of
execution time?

RQ2 How does our approach scale in execution time on satisfiable problems…
RQ2.1 …in the presence of type scope bounds?
RQ2.2 …with unbounded type scopes?

RQ3 How does our approach scale in execution time on unsatisfiable problems?
RQ4 To what extent can type scope bounds help in generating models with realistic type

distributions?

4.3.1 Domains

Due to the absence of systematically constructed performance benchmarks for the evaluation
model generation for DSLs, we evaluated our approach in the context of 3 different domains
(and the corresponding DSLs) that include complex structural and WF constraints. The first
domain served as the running example in this chapter (Figure 2.1):

68



4. Multiplicity reasoning for consistent graph model generation

• Sat is the design space exploration challenge introduced by researchers at NASA Jet
Propulsion Lab [Her+17]. As a specific characteristic of this case study, structural con-
straints specify the number of CommSubsystems and Payloads that can be fitted to a
number of Spacecraft, while WF constraints encode additional design rules concerning
the satellite communication network.

Two additional case studies exemplify test generation scenarios for industrial modeling tools:

• Sct: Yakindu is an industrial modeling environment for statecharts [Yak]. This scenario
represents generating tests for a concrete modeling tool (Yakindu Statecharts). The WF
constraints of the language help avoiding common semantic errors (e.g., the lack of an Entry
object signifying state). As a specific characteristic of this case study, most constraints
can participate in object scope propagation (after linearization) to determine the possible
numbers of objects (e.g., the Entry and its outgoing Transition instance that denotes the
initial state).

• Met: Ecore is the meta-modeling language of EMF [Ste+09]. This scenario represents
test generation for a modeling framework (e.g., code generation and persistency). As a
specific characteristic, while this case study uses a large number of classes in a complex
inheritance hierarchy along with WF constraints, only few of them can be translated into
linear inequalities for scope propagation.

In addition to their practical relevance, the these two languages have been used as case studies
by multiple model generation papers [SNV18; SVV16; CCR07; Büt+12; Wu16; Alk+20].

4.3.2 Scope analysis methods

Setup This experiment aims at determining which scope analysis method should test engineers
use for scalable model generation. We generated models containing up to 100 objects in the Sat
domain.The original GraphSolver (GS/O) served as a baseline (with type scopes translated to WF
constraints). We evaluated the Type Hierarchy (GS/S/TH) scope analysis method, which relies
on no external solver, in addition to the Integer Programming (GS/S/IP) and Linear Program-
ming (GS/S/LP) methods. We selected external solvers widely used in industry and research
from the COIN-OR suite: COIN-OR Branch and Cut v2.9.9 for GS/S/IP and COIN-OR Linear
Programming Solver v1.16.10 for GS/S/LP2.

As there were no manually created models available for Sat, type scope bounds derived
from engineering expectation. When specifying the type scope bounds, we ensured that they
were satisfiable, i.e., a valid model exists with the specified number of objects. Unsatisfiable
scope bounds are quickly detected by the IP/LP sovers, but cause other approaches to explore a
very large number of partial models.

A timeout of 5 minutes was set for each model generation with increasing model sizes. Runs
for a given model size were repeated 30 times to account for variance caused by the random
exploration and backjumping employed in the generator, as well as the runtime environment.

We also accounted for warm-up effects and memory handling of the Java 11 virtual machine
(JVM). Mitigating warm-up effects for benchmarks of small programs (execution time < 2 s) may
need a large number of runs [Bar+12]. However, since our macrobenchmarks for the scalability
evaluation GS and A had much longer execution times (up to 300 s), 10 extra runs before the

2We also experimented with the aZ [BPF15] v4.8.5 optimizing SMT solver. With Real variables (used as an
LP solver) it produced results similar to CBC and CLP, albeit it performed object scope analysis slightly slower.
With Integer variables (used as an IP solver), it produced out-of-memory errors. Results were omitted for space
considerations.

69



4. Multiplicity reasoning for consistent graph model generation

GS/O GS/S/TH GS/S/IP GS/S/LP

10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100

0

20

40

60

0

20

40

60

0

100

200

300

0

100

200

300

Model size (#Objects)

R
u

n
tim

e
 (

s
)

State coding

Exploration

Decision and

unit propagation

Scope analysis

Initialization

Figure 4.3: Comparison of scope analysis methods on the Sat domain

actual measurements and explicit garbage collector calls between runs were sufficient for the
stabilization of performance.

All measurements were executed on a high-performance server (2 × AMD EPYC 7551 32-
core, 64-thread 2GHz CPU, 512GiB RAM) with a hard memory limit of 32GiB, 16 GiB of which
were assigned to the JVM heap to account for additional memory usage by IP and LP solvers.
While the model generator is single threaded, parallel garbage collection of the JVM could take
advantage of the 8 CPU cores (16 hardware threads) assigned to a measurement.

Results The median running times of the approaches for different model sizes are shown in
Fig. 4.3. GS/O frequently ran out of the 300 s limit when generating models larger than 30 objects.
Timeouts were less frequent in the case of 20 and 40 objects, which caused the median execution
time of all runs (including timed out ones) to be discontinuous. This phenomenon can be partially
explained by the interaction of type scope bounds and structural multiplicity constraints in Sat,
which are somewhat easier to satisfy for these model sizes. GS/S/TH only reached the time limit
for 80 and 90 objects. The median execution times for GS/S/IP and GS/S/LP were much smaller,
not exceeding 65 s to generate models with 100 objects. This makes them the only approaches
that were able to produce models of this size.

For all approaches, most of the execution time was spent in the decision and scope propaga-
tion, state coding, and exploration steps. The overhead of scope analysis remained below 3.1 s
even for the largest generated models, which is negligible compared to other phases of model
generation.

For models with 90 elements, TH scope analysis reduced number of states (partial models)
explored during successful model generation from 41 000 (GS/O) to 36 000. IP and LP further
reduced this to around 4000 states, indicating the effectiveness of scope analysis in discarding
partial models with no valid concretization. While IP and LP reduced the state space virtually
identically, linear programming (LP) was slightly faster: The overall runtime of the external
solver was 1.7 s when generating 100-object models compared to the 3.1 s of IP.

RA1 Object scope analysis can significantly reduce both the execution time and the state
space of model generation. Linear programming can provide the largest reductions with
only a minor overhead of external solver calls.

4.3.3 Scalability of model generation

Setup This experiment aims at determining whether our model generation runs in practical time
for test case generation with type scopes. We generated models with increasing size in the Sat,
Sct, and Met domains. For answering RQ2.1, we used scope bounds (+S) based on engineering
expectations for Sat, and bounds based on real type distributions for Sct and Met (see the
elaboration of RQ4). For answering RQ2.2, type scope bounds were omitted (–S) by definition.

70



4. Multiplicity reasoning for consistent graph model generation

●●●

●●●
●

●●●●●●●

●●

●●●●

●●●

●●●

●●●

●

●●●
●

●

● ●●● ●●●●
●●●

●

●
●

●●
●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●

●
●●●● ●

●●

●

●● ●

●

●

●●●

●

●●

●

●

●●

●

●

●

● ●●●● ●● ● ●●● ●
●● ●● ●●

●

●●

● ●●●

● ● ●

●
●

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
10

0
20

0
30

0
0

10
0

20
0

30
0

0
10

0
20

0
30

0

0
25

50
75

100
0

25
50

75
100

0
25

50
75

100

Model size (#Objects)

R
un

tim
e 

(s
) Tim

eout (%
)

S+S | A/S4J S+S | A/MS S+S | GS/O S+S | GS/S 

S+S | A/S4J S+S | A/MS S+S | GS/O S+S | GS/S 

M+S | A/S4J M+S | A/MS M+S | GS/O M+S | GS/S 

Figure 4.4:
Model generation with
type scope bounds

The hardware environment and measurement protocol was identical to that of RQ1. We
compared the scalability of the following model generators:

• A: Alloy Analyzer [Jac02] v4.2 is a popular model finder based of SAT solving (we used
the default Sat4J background solver). We translated the model generation problem into
an Alloy model by known mappings [TJ07]. We benchmarked both the Sat4J (A/S4J) and
MiniSat (A/MS) background solvers.

• GS/O: To generate models with type scope bounds using the original GraphSolver, the
bounds were translated into WF constraints.

• GS/S: Following the findings of RQ1, our graph generator used LP for object scope
analysis.

Results Figs. 4.4 and 4.5 show the execution times of the generators. The random exploration
and backjumping heuristics caused large variance in the execution time, including frequent (but
nondeterministic) timeouts of GS/O for larger models. To enable the in-depth analysis of these
effects, the figures show boxplots of successful execution times for a given model size. Thus, the
medians for GS/O are lower than those in Fig. 4.3, which were computed across all (successful or
unsuccessful) runs. A red line chart shows the percentage of unsuccessful (timed out) executions
out of the 30 runs for a given model size.

A encountered out of memory errors as the SAT problems grew too large with the increase
of the desired number of objects in the models. In contrast, GS/O and GS/S were only limited
by the execution timeout as limit (and hence the number of partial models the could explore)
thanks to the concise representation of the space state by PMs.

It is clear that type scope bounds make the model generation tasks more challenging. For
Sat, GS/O was unable to generate any model of 100 objects. With scope bounds, timeouts
started to appear from 30 objects, while without bounds, models with up to 70 elements were
generated without timing out. GS/S could generate models with 100 objects within 108 sec.
However, GS/Swith scope bounds exhibited some random slowdowns, where generation took an
exceedingly long time or reached the time limit. These slowdowns, which were not experienced

71



4. Multiplicity reasoning for consistent graph model generation

●●●●

●

●●

●●●●●

●●

●●●●

●
●

●

● ●

●
●

●
●●●

●●●

●● ●

● ●
●
●

●

●

●●●● ●●
●
● ●●

●
● ●

●

●

●
●

●
● ●

●

●

●

●

●●●
●●●

●●

●
●

●

●
●●●

500 2000 500 2000 500 20001250 500 1250 2000

100 300 500 100 300 500 100 300 500 100 300 500

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
10

0
20

0
30

0
0

10
0

20
0

30
0

0
10

0
20

0
30

0

0
25

50
75

100
0

25
50

75
100

0
25

50
75

100

Model size (#Objects)

R
un

tim
e 

(s
) Tim

eout (%
)

12501250

S−S | A/S4J S−S | A/MS S−S | GS/O S−S | GS/S 

S−S | A/S4J S−S | A/MS S−S | GS/O S−S | GS/S 

M−S | A/S4J M−S | A/MS M−S | GS/O M−S | GS/S 

Figure 4.5:
Model generation without
type scope bounds

during model generation without scope bounds, could possibly be mitigated by refining the
backjumping and restarting strategies.

The interaction of type scope bounds with structural and WF constraints in Sct made
generation of models with realistic type distributions difficult. GS/O failed to generate any
model of 40 objects or larger, while GS/S could generate models with 200 objects within 95 sec.

The removal of type scopes bounds greatly simplifies the task. Both GS/O and GS/S could
produce models with up to 500 objects. In this domain, type scope analysis in GS/S yielded a
median overhead of 16 s (on a total runtime of 149 s) without reducing the state space (and thus
the execution time) of the generator compared to GS/O for models with 500 objects.

AsMet does not contain any structural multiplicity constraints or WF constraints that affect
the number of possible objects in the model, GS/S could only analyze the type scope bounds
themselves. This reduced the median runtime of successful model generation by 18 s and the
fraction of timed out runs by 36%. Like Sct, the removal of type scope bounds in Met made the
problem easier. GS/O and GS/S could generate models with up to 2000 elements with similar
performance (with a median scope analysis overhead of 21 s for models of 2000 objects). A failed
to produce a model even for the smallest size (200 objects) in this scenario.

As a stress test, we also determined the maximum size of a model that GS/S can generate
within the time limit of 5 minutes. With type scope bounds, these were 155 objects for Sat, 436
for Sct, and 121 for Met. Without satisfying the type scope bounds, much larger models are
possible: 157 objects for Sat, 649 for Sct, and 2631 for Met.

RA2.1 For model generation problems with type scope bounds, object scope analysis im-
proves the scalability model generation. The effect is most visible with up to 7-fold reduction
in execution times when the type scope bounds interact with structural multiplicity con-
straints and WF constraints.

RA2.2 In model generation problems without type scope bounds, object scope analysis
improves the scalability of model generation in domains with complex structural multiplicity
constraints. When no such constraints are present, where is no performance improvement,

72



4. Multiplicity reasoning for consistent graph model generation

●● ●●● ●●● ●●●● ●●● ●●● ●

●●● ●● ●●●●●● ● ● ●●● ●● ●

●●●●● ●●

●●●●

●● ● ●●● ●●●●● ●●● ●● ●●●● ●● ● ●●●● ●●

●●● ● ●● ●●●●● ● ●● ●

●● ●●●●● ●●●●● ●●● ●●●●

●●●
●
●●●

●

●

●

●●

●

●●●

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

0
10

0
20

0
30

0
0

10
0

20
0

30
0

0
10

0
20

0
30

0

0
25

50
75

100
0

25
50

75
100

0
25

50
75

100

Model size (#Objects)

R
un

tim
e 

(s
) Tim

eout (%
)

S+↯WF | A/S4J S+↯WF | A/MS S+↯WF | GS/O S+↯WF | GS/S 

S+↯WF | A/S4J S+↯WF | A/MS S+↯WF | GS/O S+↯WF | GS/S 

M+↯WF | A/S4J M+↯WF | A/MS M+↯WF | GS/O M+↯WF | GS/S 

The minimum model size in the        domain, even without the added
unsatisfiable +↯WF well-formedness constraints, is 10.

S

Figure 4.6:
Model generation with
unsatisfiable
well-formedness
constraints with problem
sizes up to 15 objects

but the overhead incurred by the analysis remains small.

4.3.4 Behavior on unsatisfiable problems

Setup The purpose of this experiment is to assess the performance degradation occurring in
our approach in case of unsatisfiable problems. Due to the lack of existing benchmark sets
of unsatisfiable model generation problems, we introduces two modifications to the domains
from RQ2. Firstly, we extended each domain with a negated WF constraint, obtaining model
generation problems with unsatisfiable WF constraints (+ WF). For example, in Sat+ WF,
we added the error pattern i ′

4(B) B ¬i4(B), which specifies that no Spacecraft may have a
communication path to the GroundStation. Combined with the original i4 that forces such
communication paths for all Spacecraft, the set of WF constraints {i1, . . . , i4, . . . i8, i ′

4} have no
consistent model. Error patterns for Sct+ WF and Met+ WF were defined analogously.

Secondly, we also studied the effect of unsatisfiable type scope constraints (+ S), i.e., type
scope constraints that correspond to no well-formed models. We changed the required number of
objects such that multiplicity (MUL) and containment (CON ) constraints cannot be satisfied due
to type scope bounds, e.g., in Sat+ S, we required at least 30% of the objects be Satellites but only
25% be CommSubsys instances, despite a Satellite having to contain at least one CommSubsys.
We omittedMet from this benchmark, as it does not have anyMUL constraints on CON relations.

Although we selected the type fractions to make type scope bounds unsatisfiable, rounding
the fractions to whole numbers (quantization errors) of objects may cause the problems to
be nevertheless satisfiable for very small instances. Thus, we had to account for these small
satisfiable instances in our analysis.

Results Fig. 4.6 shows the execution times of the generators on + WF problems up to 15
objects. Even though GS/S are primarily aimed at model generation, and thus had to explore
a large portion of possible partial models before concluding unsatisfiability, they remained

73



4. Multiplicity reasoning for consistent graph model generation

● ●● ●● ● ● ●● ●●●

●●●● ●● ● ●●●●●● ●● ●

● ●●● ●●●●● ●● ●●● ●● ● ●●● ●●

●●● ● ● ●●●● ●●●●●● ●● ●

● ●●●

● ●●●● ● ●●

●

●●

●

● ● ● ● ● ●●● ●●

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

0
10

0
20

0
30

0
0

10
0

20
0

30
0

0
25

50
75

100
0

25
50

75
100

Model size (#Objects)

R
un

tim
e 

(s
) Tim

eout (%
)

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S 

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S 

GS/S required state space exploration in the
       domain for models of size 12 and 13

The model generation problem in the
       domain was satisfiable for size 8S S

Figure 4.7:
Model generation with
unsatisfiable type scope
bounds with problem sizes
up to 15 objects

●

●● ●●●
●●

●
●
●

●●●●

●●

● ●

●

●●● ●●●

● ● ●●● ● ● ●● ● ● ●●●●

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
10

0
20

0
30

0
0

10
0

20
0

30
0

0
25

50
75

100
0

25
50

75
100

Model size (#Objects)

R
un

tim
e 

(s
) Tim

eout (%
)

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S 

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S 

Figure 4.8:
Model generation with
unsatisfiable type scope
bounds with problem sizes
up to 100 and 200 objects

competitive in Sat+ WF and Sct+ WF in problems with up to 9 and 11 objects, respectively.
Because Sat is unsatisfiable for less than 10 objects (even without + WF), GS/S could terminate
without exploring the state space for the first 5 cases. In Sct+ WF, although GS/S could not
outright avoid state space exploration, it explored 16 times less states than GS/O thanks to scope
analysis. A, which is much better suited for problems with unsatisfiable constraints, managed to
prove unsatisfiability within 4 s for all model sizes in Sat+ WF and Sct+ WF.

Met+ WF was more difficult for all approaches: while A could prove unsatisfiability with
up to 11 objects (running out of memory at 12 objects), GS/O and GS/S did not terminate within
the time limit even for 5 objects, exploring 19 000 states before timeout.

Figs. 4.7 and 4.8 show the execution times of the approaches on + S problems. For small + S
problems with up to = = 15 objects, both A and GS/S terminated successfully within 5 s except in
the cases of = = 12 and 13 in Sat+ S for GS/S. Due to the rounding of the type scope fractions
into whole number bounds, these cases did not result in immediate unsatisfiable systems of linear
equations. Therefore, GS/S had to explore 4982 and 5413 states, respectively, before concluding
unsatisfiability. There also was a rounding effect that made Sct+ S satisfiable for = = 8. The
model was found byGS/S after exploring 16 states. GS/O ran out of time after 10 objects, because
it had to exhaustively enumerate partial models.

For larger problems with up to 100 objects for Sat+ WF and up to 200 objects for Sct+ WF
in Fig. 4.8, the execution time of GS/S remained constant below 5 s. In contrast, the execution
times of A increased cubically with =.

74



4. Multiplicity reasoning for consistent graph model generation

●

● ●●● ●

●

●●●

●●● ●● ●● ●● ●● ●●● ●●

●●●●●●●

●

●●●● ●●●●●

●● ●●●●●●●● ●● ●● ● ●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●● ● ● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ●●●

Transition

Statechart

State

Region

FinalState

Exit

Entry

Choice

0.00 0.25 0.50 0.75 1.00

Human

GS/O

GS/S

Figure 4.9: Fractions of objects of
given types in Sct

●●●●●●

●● ●

●

●● ●●● ●●● ● ●● ● ●● ●

●●

●●● ●● ●●●●● ●● ● ● ●●●●●

●●● ●●●●● ●● ● ● ●●● ●● ●●● ●●●●

●●● ●● ●●● ●● ●

●

●● ●● ●● ●●●● ●●●

●

●● ●●●●●

●●

●● ●●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●●●●

●

● ●

●●●● ●

ETypeParameter

EString...Entry

EReference

EParameter

EPackage

EOperation

EGenericType

EEnumLiteral

EEnum

EDataType

EClass

EAttribute

EAnnotation

0.00 0.25 0.50 0.75 1.00

Figure 4.10: Fractions of objects of
given types in Met

RA3 For model generation problems with unsatisfiable well-formedness constraints, object
scope analysis can improve the scalability of search space exploration for model generators.
However, SAT solvers are better suited to tackle such problems. For model generation
problems with unsatisfiable type scope bounds, object scope analysis can eliminate the need
for exploring the state space, and the time taken for proving unsatisfiability is independent
from the (potential) size of the state space.

4.3.5 Type distributions of models

Setup This experiment aims at comparing test generation approaches (without and with type
scope bounds) where the test engineer desires to avoid unrealistic test models. To address RQ4, we
calculated the distribution of the fractions of objects of given types (i.e. the number of objects
of a type in the model divided by the model size) of human (manually created) models, and
compared them to the type distributions of automatically generated models. The use of type
distributions as means of realistic nature of models was motivated by [SSB20; SSB17]. As human
models were only available for Sct and Met, we excluded Sat from this comparison.

• Human: We gathered 304 Sct models with sizes between 90 and 110 objects that were
submitted as part of a homework assignment [SysMod], where students solved similar
(but not identical) modeling challenges. For Met, we collected 153 manually created class
diagrams (those generated from XML schema were excluded) with sizes between 50 and
200 from open source projects hosted on GitHub3.

• GS/O: For both domains, we generated 30 models of 100 objects (without any type scope
bounds) with the original GraphSolver [SNV18] tool.

• GS/S:Wegeneratedmodels with realistic type distributionswith our graph solver enhanced
with type scope support. To determine the lower and upper bounds for each type, we

3We queried the GitHub (https://github.com) API for the 1000 most recent Ecore models as of July 31st, 2019
and filtered for model size and the lack of XML schema.

75

https://github.com


4. Multiplicity reasoning for consistent graph model generation

computed the lower & (1)
8

and upper & (3)
8

quartiles of the object fractions in the Human
models for each non-abstract class C8 . Then for the generation of models with = = 100
objects, we added the type scope bounds

⌊
&

(1)
8
=
⌋
≤ C8 ≤

⌈
&

(3)
8
=
⌉
.

Results The distribution of type fractions is shown in Figs. 4.9 and 4.10. In Sct,GS/O generated
a large number of Exit and FinalState objects compared to the Human while it almost entirely
omitted Choice, Entry, and Region. The average discrepancy between the type distribution of
Human models in GS/O models is 25 objects per model (25%) that would need a different type
to match the Human distribution.

In Met, GS/O overused the EAnnotation, EGenericType, EStringToStringMapEntry, and
ETypeParameter classes at the expense of EAttribute, EClass, and EReference objects. The
average discrepancy was 83 objects per model (with 100 objects). Models generated by GS/S
had identical type distributions, which for EAttribute and EClass coincided with the upper type
scope bound.

Therefore, GS/O failed to generate models matching the type distributions of Human
models. In contrast, GS/S can be parameterized to satisfy type distribution requirements, e.g.,
probabilistic types and histograms [SSB17]. Furthermore, to capture more complex correlation
between distributions of different types, users can inspect generated models and easily (albeit
manually) refine type scope bounds to exclude results that are not realistic, using an iterative
process based on previously generated undesired models.

All models generated by GS/O and GS/S were connected (i.e. no islands or forest of nodes)
and they were structurally different from each other, which is guaranteed by the underlying
state space exploration strategy [SNV18].

RA4 Models generated without type scopes bounds greatly differ in type distribution com-
pared to human (manually created) models. The use of type scope bounds allows generating
nontrivial, connected graph models with designated type distributions.

While type distributions were found to be a useful metric to characterize the realistic nature
of models [SSB20; Var+18], further investigations are necessitated along various metrics to claim
that the auto-generated models are truly realistic.

We also confirmed that the internal diversity [Sem+20c] of the synthesized models is not
impacted negatively by the proposed approach. The relevance of this metric in mutation testing
is shown in [Sem+20c].

4.3.6 Limitations and threats to validity

Limitations Our approach shares some of its strengths and limitationswithGraphSolver [SNV18].
Namely, it operates over connected sparse graphs with edges and relations, i.e., without edge
identities or parallel edges (which is suitable to represent standard EMF models).

The expressive power of the graph predicates capturing WF constraints is equivalent to
first-order logic with transitive closure over binary predicates. While type scope bounds and
object scopes do not bring additional expressiveness, so they can be transformed back into WF
constraints, they considerably improve scalability in various domains. Object scopes consisting
of linear inequalities can exactly encode type scopes bounds (including the bound on the overall
model size), and they can also encode weakened versions of structuralMUL and CON constraints
(including the XOR between different containment relations of objects), guiding state space
exploration in challenges that often arise from class diagrams. However, for model generation
tasks without such constraints, it may not be possible to (even manually) encode useful linear
inequalities, and the introduced object scope analysis may pose a slight overhead over the
baseline generator.

76



4. Multiplicity reasoning for consistent graph model generation

The sound and complete set of decision rules allow formal reasoning within the bounded
scope defined by type scope bounds. However, unlike many SAT and SMT solvers, there is
currently no support for an unsatisfiable core (a minimal contradictory set of formulas) that
would highlight the contradiction between WF constraints or type scopes.

The work presented in this paper only considers classes and references, but not attributes.
While the three-valued logic framework can support basic attributes, placing and maintaining
scope bounds for attribute values would require additional abstractions, such as [FFJ12].

In unsatisfiable problems, proving unsatisfiability with a model generator may require
exponential time to exhaustively traverse the search space if the search cannot be aborted early
with scope analysis. Thus such problems may be more amenable to SAT solving instead.

The generation of models with realistic type distributions assumes the availability of real mod-
els to determine type histograms. For ensuring realistic properties other than type distributions,
additional heuristics may be needed.

Internal validity Our scalability experiments incorporated a warm-up phase prior to actual
measurements and garbage collector calls between actual measurements to reduce variance of
execution times due to the JVM (but not due to the inherent behavior of the model generators).
To further mitigate disturbances from the environment, each measurement was pinned to a single
memory controller and the associated CPU cores on our server. We used default configurations
for the external IP and LP solvers, as well as A. Domain-specific fine-tunings may reduce the
execution times of these programs, but in most cases they were already negligible.

As noted in Section 2.1.3, A only supports limited type scopes. The +S problems cannot be
formalized in A without the use of the # operator, even if lower bound constraints are omitted.
However, asA performance was similar on both +S and –S problems, our encoding of the bounds
likely did not introduce scalability bottlenecks.

For determining realistic type distributions of the industrial modeling languages, we con-
sidered manually constructed and automatically generated models of similar size to minimize
discrepancies caused by different scales. For Sat, the distribution were prescribed manually.
The behavior of the model generators did not change drastically upon changing the prescribed
distribution, as long as the arising type scope bounds remained satisfiable.

External validity Our measurements cover 3 domains (1 from a design space exploration
challenge published by NASA researchers, 2 from industrial modeling languages) both with
and without realistic type scope bounds. All domains had complex structural and WF constraints
that interacted in various ways with the type scope bounds. Consequently, our experimental
scalability results of our graph generator are likely generalizable to other domains of similar size.

As the performance of object scope analysis based on IP and LP depends on the selected
external solver, we integrated the aZ optimizing SMT solver in addition to the well-known
solvers from the COIN-OR project. In case of LP problems, performance was comparable to CLP,
while for IP problems, CBC proved to be significantly better. Therefore, the reported scalability
of IP and LP object scope propagation likely matches what is achievable with state-of-the-art
external solvers.

4.4 Related work

Logic solver approaches Several approaches map a model generation problem into a logic
problem, which is solved by underlying SAT/SMT-solvers. Complete frameworks with standalone
specification languages include Formula [JLB11] (using the Z3 SMT-solver [MB08]), Alloy [Jac02]
(using SAT-solvers like Sat4j [LP10]) and Clafer [Bak+13] (using reasoners like Alloy).

77



4. Multiplicity reasoning for consistent graph model generation

There are several approaches aiming to validate standardized engineering models enriched
with OCL constraints [GBR05] by relying upon different back-end logic-based approaches such
as constraint logic programming [CCR07; CCR08; BC12], SAT-based model finders (like Alloy)
[SAB09; Ana+10; Büt+12; KHG11; Soe+10; Sem+17; SVV16; Men+17], CSP solvers [Gon+12], first-
order logic [BKS02], constructive query containment [Que+12] or higher-order logic [GRR09].
Partial snapshots and WF constraints can be uniformly represented as constraints [Sem+17].
Growing models are supported in [JS07; SVV16] for a limited set of constraints.

Scalability of all these approaches are limited to small models / counter-examples. Fur-
thermore, these approaches are either a priori bounded (where the search space needs to be
restricted explicitly) or they have decidability issues. As our approach is independent of the
actual mapping of constraints to logic formulae, it could potentially be integrated with most of
the above techniques by complementing or replacing the back-end solvers.

Uncertain models Partial models are similar to uncertain models, which offer a rich specifi-
cation language [FSC12; SC15] amenable to analysis. They are a more user-friendly language
compared to 3-valued interpretations, but without handling additional WF-constraints. Potential
concrete models compliant with an uncertain model can be synthesized by the Alloy Analyzer
[SFC12], or refined by graph transformation rules [Sal+15]. Each concrete model is derived in a
single step, thus their approach is not iterative like ours. Scalability analysis is omitted from
these papers, but refinement of uncertain models is always decidable.

Approaches like [Fam+13] analyze possible matches and executions of model transformation
rules on partial models by using a SAT solver (MathSAT4) or by automated graph approximation
(referred to as “lifting”), or by graph query engines with [SV17]. As a key difference, our approach
carries out model refinement while simultaneously evaluating graph query evaluation.

Iterative approaches Iterative approaches generate models by multiple solver calls. In
[SVV16] models are generated in by calling Alloy in multiple steps, where each step extends the
instance model by a few elements. This approach scaled up to 50 object in 45 s for generating
valid Yakindu Statecharts. An iterative approach is proposed specifically for allocation problems
in [KJS10] based on Formula. An iterative, counter-example guided synthesis is proposed for
higher-order logic formulae in [Mil+15], but the size of models is fixed and smaller than 50
objects.

Symbolic model generation techniques Certain techniques use abstract (or symbolic)
graphs for analysis purposes. A tableau-based reasoning method is proposed for graph properties
[SLO17; Pen08; ADW16], which automatically refines solutions based on well-formedness
constraints, and handles the state space in the form of a resolution tree. As a key difference, our
approach refines possible solutions in the form of partial models, while [SLO17; Pen08] resolves
the graph constraints to a concrete solution. Therefore our approach is able to exploit efficient
graph query engines to evaluate partial solutions, while those techniques are demonstrated on
small (< 10 objects) graphs or with no scalability evaluation.

Different approaches use abstract interpretation [RD06], or predicate abstraction [RSW04;
FFJ12; Gop+04] for partial modeling. In those approaches, concretization is used to materialize
(typically small) counter-examples for designated safety properties in a graph transformation
system. However, their focus is to support model checking of abstract graph transformation
systems, which can evaluate complex trajectories, but do not scale in the size of the models.

Additionally, counter abstractions by Petri graphs were used in the verification of graph
transformation systems [Var+06] and as heuristic functions for rule-based design-space explo-
ration [HHV15]. The Augur framework [BCK01; KK08; KK06] uses similar counter abstraction
on graph properties for in graph transformation systems, which can be analyzed as a transition
system. As a key difference, a graph transformation rule can both increase or decrease amounts

78



4. Multiplicity reasoning for consistent graph model generation

in abstract graphs, while in our approach the constraints are respecting the refinement relation,
thus we can utilize IP and LP solvers instead of model checkers.

The Incidence Matrix with Multiplicity (IMM) data structure was proposed by Levendovszky
et al. [LLC05] for the automatic instantiation of UML class diagrams according to multiplicity
constraints [Lev06].

Smart bound selection for the number of objects was used in the satisfiability checking of
OCL formulas in [CGC19].

Numerical abstractions Verification of programs containing numerical (integer or real) vari-
ables by abstract interpretation relies on numerical abstract domains [Min04; SPV18], including
polyhedra defined by systems of linear equations [CH78; BHZ08], as a key component to over-
and under-approximate the sets of possible program states. Numerical abstract domains are
combined with graph abstractions in two main ways to verify heap and pointer based programs.

Firstly, numerical abstract domains may summarize object attributes (field) in value analysis
of heap programs [Mag+07; MRS10; FFJ12]. Summarized dimensions [Gop+04] were introduced
to succinctly represent attributes of a potentially unbounded set of objects via multi-objects. This
approach can be seen as complementary to ours, as it enables attribute handling in three-valued
partial models, and allows checking for refinements by abstract subsumption [APV09].

Secondly, numerical abstract domains can aid reasoning about the number of objects in a
graph (usually a program heap) by structural counter abstraction [Ban+13]. This approach is
closely related to ours, but its use is limited to program verification. In contrast, we explicitly
incorporate uncertain types and references by three-valued partial modeling to enable model
generation.

Model-based quantifier instantiation approach [Rey+13] in SMT solvers for finite model
finding also relies on counter abstractions. It can be seen as a dual to scoped model generation:
it aims to merge terms to satisfy finiteness constrains instead of splitting multi-objects to add
new objects.

4.5 Conclusions

In this chapter, we proposed a new 3-valued scoped partial modeling and reasoning technique
which allows to explicitly represent multiplicity constraints on the size of partial models with
a linear inequality system. Those constraints cover the requested size of the completed model
for each class (type) and the additional constraints imposed by the metamodel (e.g., reference
multiplicities) and well-formedness constraints. The resultant multiplicity constraints can be
efficiently solved by an underlying IP or LP solver to get a more precise view on the number
of objects in a potential concretization of the partial model, or to detect infeasible numerical
requirements on it. Based on the advanced numerical reasoning on partial models, we extend the
graph solver algorithm of [SNV18; Sem+19] with scoped partial models and numerical reasoning
using IP or LP solvers, which greatly improves the performance of the solver (and outperforms
related solvers like [TJ07]). Additionally, the proposed technique enables the efficient use of
type scopes, which allows the generation of more realistic or useful models.

79





Chapter5
Creating phased-mission models by

view transformations

Model-driven engineering in manufacturing system design [Lie+14] is typically used to capture
system architectures, behavior and possible reconfigurations. However, the extra-functional
requirements, such as dependability (reliability, availability), as well as performance concerns
(including timing and resource utilization) remain challenging to address [Vog+15], especially in
the context of changing and evolving architectures [Fel03; RSV17].

The viewpoints of dependability and performability are concerned with the probabilistic
behaviors of systems, and often need formal stochastic models for rigorous analysis. Automated
derivation of stochastic models from architecture models by model transformations [BMM99;
Koz10; BMP12] can integrate such analyses into multi-paradigm workflows.

In this work, we propose an approach to capture dynamic reconfigurations, fault handling and
parameter changes on the level of the architecture model. To do this, we define a mission automa-
ton formalism by extending Graph Transformation Abstract State Machines (GT+ASM) [VB07]
with stochastic and timing properties. GT+ASM leverages graph pattern matching, which
is the technique applied on the architecture model for the description of reconfigurations
and fault handling. The changes described by the mission automaton result in multiple, non-
overlapping phases of operation, that can be captured by stochastic modeling of phased-mission
systems (PMS) [MB99]. We also define the (graph transformation based) construction of PMS
analysis model from the architecture model and its evolution described by the mission automaton.

The PMS construction workflow is illustrated in Fig. 5.1. Domain modeling experts can
construct or reuse the architecture modeling language, the graph patterns used for specifying
changes, as well as the architecture models themselves. The modeling language is extended
with run-time attributes to describe stochastic behaviors, such as failures and performance
related events. Stochastic modeling experts specify the analysis model transformation in terms of
Generalized Stochastic Petri Nets (GPSN) [MCB84], which are especially amenable for automated,
modular construction [MB15] and allow leveraging existing transformations, e.g. [BMM99]. After
the domain modeling expert specifies the mission automaton, its state space is automatically
explored and GSPN models of the phases of operation are derived for PMS analysis.

We implemented a PMS analysis model construction tool based on change-driven target
incremental execution [CH06; Ber+15] of model transformations. Therefore, PMSs even with a
large number of phases can be created efficiently. We demonstrate our approach with a running
example and case study of a flexible manufacturing system.

The contents of this chapter are based on the conference paper [c12] and the report [r19].

81



5. Creating phased-mission models by view transformations

Create metamodel

Create initial architecture model

Create mission automaton

Select existing modeling language

Create graph patterns Create GSPN transformation

Transform architecture to GSPNEnumerate mission automaton transitionsPhased-mission analysis

[existing modeling language can be reused]

[new modeling language needed]

[new state]

[fully explored]

Figure 5.1: Dependability analysis using mission automata, with modeling expert (orange), stochastic analysis
expert (blue) and automated (white) activities

5.1 Preliminaries

5.1.1 Architecture models and metamodeling

In model-driven engineering graphs are used as formal descriptions of models, including UML,
SysML and AADL artifacts [BG01], such as production system architectures.

Metamodels explicitly describe the abstract syntax of modeling languages, including the
classes, references and attributes that comprise the language. An architecture model is an
instance model of the architecture modeling language.

We will use 4-valued partial models (Section 2.2) with attributes and compositional view
transformations (Chapter 3) to reason about architecture and dependability models. However, we
will restrict our attention to concrete models in the systems engineering process. As such models
only contain 1 and 0 logic values and concrete numbers as attribute values, the presentation can
be considerably simplified compared to Section 2.2.

In the implementation part of our work, we used the EMF [Ste+09] along with the view
transformation engine described in Chapter 3.

Example 5.1 The class diagram in Fig. 5.2 shows a metamodel for flexible manufacturing
system (FMS) architectures based on the FMS performancemodel by Ciardo and Trivedi [CT93],
which will serve as a running example throughout this chapter.
The FMS contains Machines, which have Capabilities to perform Tasks. A Task takes inputs
from a Stockpile to produce an output. Machines have reliability attributesmttf and repairTime,
while Capabilities contain the executionTime of the Task. Tasks may be marked with HIGH
importance, and the initialSize of a Stockpile can be specified.
Run-time adaptation and reconfiguration may happen in response to changes in the failed
states of machines and the size of Stockpiles. Machines may be added or removed, as well as
Tasks may be assigned to Machines.
An example instance model, which is represented as an object graph, is shown in Fig. 5.3.

As in Definition 2.2, we will use graph predicates to encode queries about models. As part
of our simplified presetation, we will assume that the evaluation of predicates only returns 1
and 0 values, i.e., they cause no invalid numeric operations (such as division by zero) that would
give rise to an  result. Therefore, we will consider any architecture models or reconfigurations
that result in invalid numeric operation a modeling error. Since the techniques presented in
the remainder of this chapter rely on generating the set of all specified reconfigurations before
performability analysis, such modeling errors can be detected before invoking costly external
analysis tools or solvers.

Here, we introduce some notions for the traceability of view transformations over concrete
models. Parameter variables, which are the free variables of the predicate, match distinguished
objects inside a pattern. Let O(") denote the set of objects in an instance model" . The tuple
〈>1, . . . , >:〉 ∈ O("): is a match argument tuple of the :-argument graph pattern q (G8 , . . . , G: ),
i.e.," � q (>1, . . . , >: ), if q matches" after binding each G8 inside q to the corresponding >8 .

82



5. Creating phased-mission models by view transformations

Fms

Machine

mttf : EDouble
repairTime : EDouble 
/failed : EBoolean 

Task

importance :
TaskImportance 

RefinementTask AssemblyTask

Stockpile

initialSize : EInt
/size : EInt

Capability

executionTime : 
EDouble

TaskImportance

NORMAL HIGH
[0..*] tasks

[0..*] machines [0..*] stockpiles

[0..*] capabilities

[0..*] assignedTasks

[1..1] output

[1..1] input

[1..1] inputB

[1..1] inputA

[1..1] task

Figure 5.2: Class diagram for the
FMS architecture metamodel

m1: Machine

m2: Machine

r2: RefinementTask

importance = HIGH

r1: RefinementTask

s1: Stockpile

initialSize = 15
s2: Stockpile

s4: Stockpile

c1: Capability c3: Capability

c2: Capability
assignedTasks

assignedTasks

input output

input

output

capabilities

task capabilities

task

capabilities

task
Figure 5.3: Example FMS
architecture instance model

pattern qCanReplace(M, R, C, T)
M: Machine

T: Task

importance = HIGH

R: Machine

C: Capability

assignedTasks

<<NEG>>
assigned-

Tasks

capabilities

task

<<NEG>>

: Task

importance = HIGH

assignedTasks

Figure 5.4: Example graph pattern

Example 5.2 Fig. 5.4 shows a graphical representation of the graph pattern qCanReplace. A
match argument tuple 〈",',�,) 〉 expresses that the Machine ' can replace" in performing
the high-importance Task ) , because it is currently not assigned to ) or any other high-
importance Task, but it has Capability � to perform ) .
In Fig. 5.3, we have � qCanReplace(m2,m1, c3, a1).

5.1.2 Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPN) are a commonly used formalisms for the dependability
evaluation of asynchronous systems. Formally, they are directed bipartite graphs with a set of
places % and transitions ) [MCB84].

A marking < : % → ℕ assigns token counts to the places. Starting from the initial marking
<0, if enough tokens are available at its input arcs, and no transition with higher priority is
fireable, a transition may be fired to remove tokens from its input places and put tokens to its
output places.

A continuous-time Markov chain (CTMC) represents the stochastic behaviors of the GSPN.
Timed transitions are fired when an exponentially distributed delay with rate parameter _(C)
has elapsed, while immediate transitions are fired immediately according to their priority Π(C)
and probability weight _(C) when they become enabled.

5.1.3 Phased-mission systems

Phased-mission systems are characterized by consecutive phases of operation caused by changes
in system configuration or environment [SRA92]. Modeling and analysis of PMSs are made more
complex than single phased systems by the history of the system, such as degradation of the
components, affecting subsequently occurring phases.

In state-based stochastic PMS models, each phase is described by a lower level model. The
upper level model determines the length of each phase and the possible phase transitions. In

83



5. Creating phased-mission models by view transformations

order to propagate the history of the system, phase transitions map states of the lower level
model associated with the source phase to the target phase.

5.2 Automated analysis model construction

5.2.1 Dependability analysis models for static architectures

First we consider the construction of analysis models for failure processes of unchanging archi-
tectures, which will be called the static analysis model transformation. Creation of the dynamic
analysis models that incorporate reconfigurations of the architecture models calls the static
transformation as a subroutine.

In case of architecture models, the typical approach is a modular transformation where
patterns from the architecture model are systematically mapped (based on the types of ele-
ments) to interconnected model fragments in the analysis model. This process is facilitated by
modular and compositional extensions to Petri nets [MB15]. For example, the modular Petri
nets formalism [KP09] allows the assembly of large models by instantiating and connecting net
fragments.

Model transformations tools, such as [Jou+08; Ber+15; QVT], construct target (right-side)
models according to matches of precondition patterns in the source (left-side) models. The left
side of a single transformation rule is a precondition graph pattern q . The right side is a template
for target model objects, in our case, a Petri net fragment [KP09]. For each match argument
tuple 〈G1, . . . , G:〉 of q its right side is instantiated by adding a copy of it to the target model.

Traceability information relates the source and the target instance models. The horizontal
trace hyperedges connect the objects of the match argument tuples on the left to the target model
objects on the right. By adding local names to objects within Petri net fragment templates, target
model elements can be referenced through horizontal traces: q (G1, . . . , G: ) .? 9 unambiguously
identifies the place with local name ? 9 in the fragment instance associated with the rule q and
match arguments 〈G1, . . . , G:〉.

5.2.2 Handling architecture model changes

No we look at architecture model changes that produce a new model "2 from the original
architecture"1.

5.2.2.1 Vertical trace

The vertical trace relation ∼ : O("1) × O("2) between the objects of"1 and"2 describes the
objects preserved, created and removed. If G ∼ ~ holds, the modification preserved G as ~ in"2.
Created objects ~ have no corresponding G , while removed objects G have no ~.

Given horizontal traceability information for "1, "2, we can derive vertical traces for their
analysis models PN 1, PN 2. Let q (G1, . . . , G: ) .? ∼PN q (~1, . . . , ~: ) .? when G8 ∼" ~8 (8 = 1, . . . , :),
where ∼" and ∼PN are the vertical traces of the architecture and analysis models, respectively.
That is, a Petri net node is preserved if the match arguments of the responsible rule activation
were preserved by the architectural change.

Horizontal and vertical traces are illustrated in Fig. 5.5. From the starting architecture"0

and its analysis net PN 0 several other models are created by architectural changes. A vertical
trace relation accompanies each modification. Each architecture"8 is connected to its Petri net
PN 8 by the horizontal trace hyperedges. The vertical trace between each adjacent PN 8 , PN 9 can
be derived from the vertical trace between"8 ," 9 and the corresponding horizontal traces.

84



5. Creating phased-mission models by view transformations

M0

M1 M4 M5

M6M2 M3

PN0

PN1 PN4 PN5

PN6PN2 PN3

vertical trace
model
change

horizontal trace

derived vertical
trace in Petri net

phase
transition

Figure 5.5: Traceability
relationships of the architecture
and analysis models

qStockpile(s2)

items

qInput(m2, s2)

input

deliver

putBack

qMachine(m2)

down up

idle

repair

fail

qAssignedTask(m2, r2, c3)

started

execute

begin

abort

qOutput(m2, s3)

output deliver

qStockpile(s3)

items

observable m1.failed := qMachine(m1).down >= 1, observable m2.failed := qMachine(m2).down >= 1,
controllable  s1.size := qStockpile(s1).items, controllable  s2.size := qStockpile(s2).items, controllable  s3.size := qStockpile(s3).items 

Architectural
model

Run-time
attributes

M
is

si
on

au
to

m
at

on

Stochastic
Petri net

Marking

marking dependent

marking independent
query

guard

reconfigure

control

transform

update
compute

qStockpile(s1)

items

15

qInput(m1, s1)

input

deliver

putBack

qMachine(m1)

down up

idle

repair

fail

qAssignedTask(m1, r1, c1)

started

execute

begin

abort

qOutput(m1, s2)

output deliver

a) Stochastic Petri net analysis model for the FMS architecture in Fig. 3 with the run-time attributes.

b) Flow of information in the PMS analysis.

Figure 5.6: (a) Example Petri net analysis model for our running example and (b) flow of information in the
PMS analysis.

5.2.2.2 Maintenance of markings

Along with the stochastic Petri net describing the failure processes of the production system, we
also maintain the original architecture model so that it can be used to specify reconfigurations.
Hence the states of the system are represented by pairs 〈"8 ,< 9 〉 of architectures"8 and markings
< 9 of the corresponding PN 8 .

When the architecture changes add or remove objects, the restriction of∼" to O(")∩O(" ′),
and hence the restriction of ∼PN to PN ∩ PN ′ is invertible. Upon such architecture change
" ↦→ " ′, the state change 〈",<〉 ↦→ 〈" ′,<′〉 updates the marking as follows: Tokens are
preserved along the derived vertical traceability, i.e.<′(?′) =<(?), where ? ∼PN ?

′. New places
@ of PN ′ with no corresponding place in %# are set to their initial marking<(@) =<0(@) instead.
Tokens on deleted places are lost.

While architecture element splits and merges are unusual in object-oriented modeling,
they can be also handled. Upon a split with ? ∼PN @1 and ? ∼PN @2 (@1 ≠ @2), the tokens
<(?) = <′(@1) = <′(@2) are copied. Merges ?1 ∼PN @, ?2 ∼PN @ are only possible when
<(?1) =<(?2) so that<′(@) =<(?1) =<(?2) is well-defined.

5.2.3 Augmenting architecture models with run-time features

For capturing the effects of run-time events, especially failures and execution of tasks, the static
architecture model is extended by so-called run-time attributes, which are computed from the
markings of the Petri net fragments that represent these events.

Precisely, run-time attributes are computed from the marking < 9 in each system state
〈"8 ,< 9 〉 and are affixed to the objects of the architecture model"8 . Reconfiguration strategies
can be formulated without knowing the details of the analysis model and the related transforma-
tion. Instead only the architecture model and its run-time extensions are accessed, promoting
information hiding and modularization.

85



5. Creating phased-mission models by view transformations

Observable run-time attributes are read-only attributes computed from the marking of the
Petri net. In contrast, controllable run-time attributes can be modified by reconfigurations,
causing changes in the Petri net marking. For simplicity, a controllable attribute must correspond
to the number of tokens on a single place ? , so that updating the attribute updates<(?) directly.

To prevent the change of the Petri net marking from triggering the construction of a new
analysis model, graph patterns may not depend on run-time attributes.

Example 5.3 The analysis model for the architecture in Fig. 5.3 is shown in Fig. 5.6.a. The
static transformation incorporates failure models for machines into the FMS model adapted
from [CT93]. The dashed rectangles correspond to the Petri net fragment instances and their
horizontal traces.
The marking of items (for a stockpile) is the initial marking is the initialSize of the Stockpile.
The timed transitions deliver and putBack model pallets which move work items between
stockpiles and machines, while the immediate transitions begin and abort are responsible for
starting tasks and aborting them when a fault occurs.

5.3 Mission automata

In-place graph transformation rules (GT) controlled by an abstract state machine (ASM) were
proposed [VB07] as a mathematically precise description of model changes. In this section we
define a stochastic and timed variant of GT+ASM for reconfigurations of automated production
systems.

Informally, the mission automaton is a GT+ASM running along the stochastic Petri net
analysis model. Transitions in the automaton may be triggered by changes of run-time attributes
in the analysis model or by the elapsing time. Actions attached to transitions may reconfigure
the architecture model, as well as update a set of global variables.

Fig. 5.6.b illustrates the data flow between the mission automaton, the architecture models
and the stochastic Petri nets. In the mission automaton, interactions between the static elements
and run-time attributes of the architecture model are avoided by forbidding access to the run-time
attributes in actions that modify the static architecture elements. Instead, as described in the
next section, a specific run-time attribute update action is offered with limited control flow.

Therefore, the parts of mission automaton that depend solely on the static architecture
model are separated from those that also depend on run-time attributes, and hence the Petri
net marking. Thus the state space of the mission automaton can be overapproximated without
exploring the state spaces of the derived Petri nets. State space and probability distribution
handling is delegated to a PMS analysis tool.

5.3.1 Formal definition

A mission automaton is a 5-tuple 〈!, ℓ0, � ,�,) 〉, where ! is the set of locations, ℓ0 ∈ ! is the initial
location, � ⊆ ! is the set of final locations, � is the set of global variables, and ) is the set of
transitions. A transition 〈ℓ1, ℓ2,+ , q, ®G, g, ®U〉 ∈ ) from ℓ1 ∈ ! to ℓ2 ∈ ! is equipped with a set of
local variables + , a :-parameter precondition pattern (guard) q , a list of parameters ®G , a trigger g
and list of actions ®U . The parameters ®G = 〈G1, . . . , G:〉 are global or local variables (G8 ∈ � ∪+ ),
such that each local variable E ∈ + appears at least once in ®G . Variables will be bound to objects
of the architecture model.

5.3.1.1 Expressions

Algebraic and logical expressions can be formed using the attributes of objects O(") pointed
by the variables. We do not specify syntax and semantics for the expressions other than the

86



5. Creating phased-mission models by view transformations

mission manufacturing  
global Mat, Prod, R1, T1

initial
replaced

rampedUp newMats

end

on  M.failed weight 1.0 / C.executionTime
[qCanReplace(M, R, C, T)] / 
R1 := R; T1 := T; assign(R, T)

on  Prod.size >= 7 /  
addMachines(2)

on  Prod.size >= 7 / 
unassign(R1, T1); addMachines(3) 

after 300 / 
Mat.size := Mat.size + 45 

on  Prod.size >= 30 / - 

Figure 5.7: Example mission
automaton

attribute references G .0, where 0 is an attribute from the architectural metamodel and G ∈ � ∪+ .
An expression is run-time attribute dependent if it contains an attribute reference G .0 where

0 is a run-time attribute.

5.3.1.2 Triggers

The trigger g may be a (a) state-based trigger “on 4 weight F”, where 4 and F are (possibly
run-time attribute, and thus marking dependent) Boolean and weight expressions, respectively;
or a (b) timed trigger “after 3”, where the delay expression 3 is not dependent on the value of
any run-time attribute.

5.3.1.3 Actions

Each action U8 of ®U = 〈U1, . . . , U<〉 is either a (a) variable update “6 B G”, where 6 ∈ � and
G ∈ � ∪+ ; an (b) attribute update “G .0 B 4”, where G ∈ � ∪+ , 0 is a controllable attribute and 4
is a (possibly run-time attribute dependent) value expression; or a (c) model manipulation action.
Model manipulation actions modify the architecture model by adding or removing objects or
references, as well as changing static attributes. Due to space constraints, we refer to an existing
host language1 for semantics model mutation, as well as algebraic graph transformations for a
precise mathematical foundation [Ehr+06; VB07].

Example 5.4 Fig. 5.7 shows a mission automaton for FMS reconfiguration, which showcases
the expressiveness of our formalism. Transitions are denoted as g [q ( ®G)]/®U , where the guard
is omitted if it is the trivial graph pattern (which has 0 parameters and holds always).
The global variables Mat and Prod should be initialized to the stockpiles of raw materials and
final products, respectively. When the FMS completes 7 products, the automaton moves to
the rampedUp location from initial, and a model manipulation action adds 2 more machines.
However, if somemachine" responsible for aHIGH importance task) fails before ramping up,
the transition to replaced is taken instead. The pattern qCanReplace (Fig. 5.4) also binds local
variables to the replacement machine ' and its capability � , so we can give faster machines
larger weight among multiple possible replacements. ' and ) are saved to global variables R1
and T1, and a model manipulation action assigns ) to '. When ramping up, this assignment
is removed, and 3 more machines are added. 300 time units later, 45 more raw materials are
added by an attribute update action. The final location end is reached after the FMS completes
30 products.

5.4 Phased-mission analysis

Analysis of architecture models and mission automata is performed in two steps. Firstly, the
mission automaton is unfolded by taking into account the potential instantiations of its transitions,

1The Xbase language and the Xtext framework (https://www.eclipse.org/xtend/) were used as the hosts in
our implementation.

87

https://www.eclipse.org/xtend/


5. Creating phased-mission models by view transformations

as well as the modifications of the architecture model instance. The unfolded mission automaton
and architecture model configurations form a tree (Fig. 5.5).

The (indirectly) marking dependent behavior of the mission automaton is overapproximated
by ignoring triggers in the automaton. Each mission automaton transition is considered fireable,
regardless of the reachable markings of the stochastic Petri net analysis model.

Dependence on the static and run-time parts of the architecture models is erased from the
triggers and actions by substituting architectural concepts with their Petri net representations in
the analysis model.

Secondly, the tree of architecture configurations is turned into a PMS for analysis. The upper
level model is the unfolded mission automaton, where transitions between phases of operation
are governed by the trigger expressions. The lower level models are the stochastic Petri nets that
describe the behavior of the system during a phase. As the mission completes successfully upon
reaching a final location, the corresponding phases are marked in the upper level model.

The hierarchical methodology proposed by Mura and Bondavalli [MB99; MB01] can be
adapted for the PMS analysis.

5.4.1 Mission unfolding

We now present an explicit state-space exploration method for determining the reachable
configurations of the mission automaton. Based on the reachable configuration, we derived the
upper and lower level models for the PMS.

In the resulting PMS, the firings of Petri net andmission automaton transitions are interleaved
(in a cyclic execution) as follows:

1. Immediate Petri net transitions are fired first.

2. Reconfigurations described by the mission automaton happen in response to the behavior
of the stochastic Petri net, as well as after deterministic delays associated with timed
triggers elapse.

3. Timed Petri net transitions are only fireable if no mission automaton transitions can be
fired.

5.4.1.1 Mission automaton configurations

We define a configuration of the automated production system model as a tuple 〈", val, ℓ〉, where
" is an architecture model, val : � → O(") ∪ {⊥} is a global variable valuation, and ℓ ∈ ! is
the active location of the mission automaton.

Given an initial architecture model"0 and initial valuation val0 the unfolding determines
the set configurations reachable from 〈"0, val0, ℓ0〉, where ℓ0 is the initial location of the mission
automaton.

5.4.1.2 Transition instances

Let C = 〈ℓ1, ℓ2,+ , q, ®G, g, ®U〉 ∈ ) be a mission automaton transition. A global variable valuation
may be extended along C to a local valuation lval : � ∪+ → O(") ∪ {⊥}, where lval(6) = val(6)
for all 6 ∈ � , while local variables E ∈ + take some value lval(E) ∈ O(") from the architecture
model. A valuation is acceptable for C if the precondition" � q (lval(G1), . . . , lval(G: )) holds.

Acceptable transition instances in 〈", val, ℓ〉 are pairs 〈C, lval〉 where lval is an acceptable
extension of val along C and the active location ℓ is the source location ℓ1. When exploring the
reachable configurations, each acceptable transition instance is considered fireable.

88



5. Creating phased-mission models by view transformations

For each transition instance 〈C8 , lval8〉, its variable update actions are executed to yield the
updated valuation val′8 . Moreover, the model manipulation actions are executed on" with the
local valuation lval8 in scope to obtain the reconfigured architecture" ′

8 . Thus a new reachable
configuration 〈" ′

8 , lval
′
8 , ℓ

′
8 〉 is found, where ℓ ′8 is the target location of C8 .

The exploration strategy is an overapproximation in the sense that the run-time attribute
dependence of the mission automaton transitions is ignored. Each transition instance with a
state-based trigger is considered fireable, even if no marking of the Petri net analysis model is
reachable with positive probability (or is reachable at all) that satisfies the trigger. Therefore,
some extraneous configurations may be explored that have 0 probability of being reached. In
Section 5.4.2, where the solution of the phased-mission model is discussed, these configurations
will propagate zero probability vectors.

Architecture models "8 are not checked for equivalence, thus all reached configurations are
considered different. This results in a tree of explored configurations with 〈"0, lval0, ℓ0〉 at its
root, but precludes the use of loops.

Example 5.5 Fig. 5.8 shows the reachable configurations of the mission automaton in Fig. 5.7
with the initial architecture in Fig. 5.3 and the initial global valuation {Mat ↦→ s1, Prod ↦→
s4,R1 ↦→ ⊥, T1 ↦→ ⊥}.
The architecture model"1 was obtained from the initial architecture"0 by adding two new
Machines. The static structures of"2 and"3 coincide with "1; however, in "2 the run-time
attribute s1.size was increased by 45.
In"4 the additional task a1 was assigned tom1 via its capability c3, and this fact is memorized
in the global variables R1 and T1. "5 is obtained from "4 by unassigning a1 from m1 and
adding two new machines, while in "6, the run-time attribute s1.size was increased. Lastly,
"7 conincides with"6.
Increasing the number of Machines would lead to an increased number of qCanReplace graph
pattern matches, and thus more initial ↦→ replaced transition instances would be acceptable.
Hence more children would be added to the root configuration of the tree.

5.4.1.3 Erasure

We define J4Klval be the erasure of the expression 4 . The goal of erasure is to resolve the
architectural concepts (e.g. run-time attributes) by substituting these with their Petri net based
representations, so that places of the analysis model PN associated with architecture model"
of the active configuration are referenced.

The erased expressions that reference lower-level Petri net elements appear in the higher-
level model of the PMS, so that the PMS can be processed by Petri net analysis tools without
referencing the architecture models.

For every reference G .0 to an attribute 0 of the variable G ∈ � ∪+ first the object > = lval(G)
is looked up in the architecture model. If 0 is a run-time attribute, the vertical trace is traversed
and G .0 is replaced in 4 with a function that calculates 0 of > from the Petri net marking.
Otherwise G .0 is replaced with the value of the attribute 0 of > . Therefore the erasures of
marking dependent expressions are functions of the Petri net marking such that J4Klval (<) is the
value of the expression in the marking<, while the erasures of marking independent expressions
are plain values J4Klval .

The erasure JgKlval of a trigger replaces its constituent expressions with their erasures.
The erasure of the attribute update action U = G .0 B E is JUKlval = ? B JEKlval , where ? is

the place associated with the controllable attribute 0 of lval(G).

89



5. Creating phased-mission models by view transformations

M0, initial, 
{Mat -> s1,Prod -> s4}

M4, replaced, 
{Mat -> s1,Prod -> s4  
R1 -> m1, T1 -> a1}

M6, rampedUp, 
{Mat -> s1,Prod -> s4  
R1 -> m1, T1 -> a1}

M5, newMats, 
{Mat -> s1,Prod -> s4  
R1 -> m1, T1 -> a1}

M7, end, 
{Mat -> s1,Prod -> s4
R1 -> m1, T1 -> a1}

M1, rampedUp, 
{Mat -> s1,Prod -> s4}

M2, newMats, 
{Mat -> s1,Prod -> s4}

M3, end, 
{Mat -> s1,Prod -> s4}

Figure 5.8: Reachable configura-
tions of the mission automaton in
Fig. 5.7 with the initial architecture
in Fig. 5.3. Variable bindings to ⊥
were omitted.

PN0

PN1

PN2

PN3

PN4

PN5

PN6

PN7

on  qStockpile(s4).items >= 7  
weight 1.0 / - 

derived
vertical trace

after 300 /  
qStockpile(s1).items :=  

qStockpile(s1).items + 45 

on  qStockpile(s4).items >= 30  
weight 1.0 / -

on qMachine(m2).down >= 1
weight 0.0167 / -

on  qStockpile(s4).items >= 7  
weight 1.0 / -

after 300 / 
qStockpile(s1).items := 
qStockpile(s1).items + 45 

on qStockpile(s4).items >= 30 
weight 1.0 / -

Figure 5.9: Example PMS upper-level model based on
Fig. 5.8.

5.4.1.4 Phased-mission construction

As mentioned in Section 5.2.2, each reachable configuration 〈"8 , val8 , ℓ8〉 is turned into a lower
level PN 8 model of the phased-mission system, which represents production system behavior
during a single phase.

The upper level model is a tree of the lower level models. If the configuration 〈" 9 , val 9 , ℓ9 〉
was obtained from 〈"8 , val8 , ℓ8〉 by firing the transition instance 〈C, lval〉, the tree edge PN 8 → PN 9

is annotated with

• the erasure g̃8 9 = JgKlval of the trigger g of C ,

• the erasures ®̃U8 9 = 〈Ũ (1)
8 9
, . . . , Ũ

(: )
8 9

〉 of the attribute update actions associated with C ,

• the derived vertical trace ∼8 9 ⊆ PN 8 × PN 9 .

Since global variable update and model manipulation actions are executed during the explo-
ration of reachable configurations, they are not needed in the numerical solution of the PMS.
We only preserve attribute update actions, since they can modify the Petri net marking.

For each lower-level model (phase) PN 8 , there may be at most one tree edge PN 8 → PN 9

with a timed trigger g̃8 9 = after 3̃8 9 . Note that weight-based random selection of delayed phase
transitions can be written as a combination of an “after 3” and several “on true weight F”
triggered transitions in the mission automaton. Therefore this restriction is merely syntactic.
We call this edge the delay edge of PN 8 . Because timed triggers cannot be marking dependent,
3̃8 9 is a constant, which we call the sojourn time 28 of PN 8 .

The phase PN 8 is final if the corresponding location ℓ8 is final in the mission automaton.

Example 5.6 Fig. 5.9 show the upper-level model obtained from the tree of configurations in
Fig. 5.8.
Each transition is annotated with the erasure of its trigger and its attribute update actions,
which only refer to Petri net level concepts. Elements of the Petri net are identified according

90



5. Creating phased-mission models by view transformations

to the horizontal trace for readability. However, horizontal trace links may be replaced by
unique IDs to avoid referencing the architectural model.
Transitions also carry derived vertical trace information. Therefore the effects of degradation
processes and other information in the markings can be propagated.

5.4.2 Solution of the hierarchical model

Starting from the root, the nodes of the upper level tree are traversed to determine the probability
of successful mission completion. The lower level model PN 8 , which describes system behavior
during the traversed phase, is solved by steady-state or transient stochastic analysis [RST89].
The resulting probability distribution vectors are propagated through the tree to complete
phased-mission analysis [SRA92; MB99].

A (sub)probability distribution over the markings of the lower level model PN 8 is represented
as a (sub)probability vector ®c . Each c [0] is the probability of some reachable marking<0 .

The generator matrix & of the CTMC PN 8 governs the time evolution m
mC
®c = ®c& of ®c .

Probability vectors have the property ®c · ®1) = 1, i.e. the sum of marking probabilities
is 1. Branchings of the upper level tree introduce subprobability distributions, which satisfy
0 ≤ ®c · ®1) < 1 instead.

5.4.2.1 Lower-level model solution

Consider a node PN 8 of the upper level model. Without loss of generality, let the child (successor)
nodes of PN 8 with state-based triggers be %# 9 , . . . , PN 9+<−1, where the erasures of the triggers
are g̃8, 9+ℓ = on 4̃8, 9+ℓ weight F̃8, 9+ℓ (ℓ = 0, . . .< − 1).

Analysis of PN 8 starts from the initial (sub)probability vector ®c8 . In the initial phase (8 = 0),
®c0 assigns probability 1 to the initial marking of PN 0 and 0 for any other marking. Otherwise,
PN 8 is computed by a previous analysis step.

The set of reachable markings of PN 8 should be explored from every marking supp ®c = {<0 |
c [0] > 0} in the support of the initial (sub)probability distribution.

When the generator matrix & is constructed, transition rates from markings satisfying
4̃8,any =

∨<−1
ℓ=1 4̃8, 9+ℓ are set to 0. Hence the marking will not change after the first time a state-

based trigger is activated. In contrast, ¬4̃8,any markings are yet to activate any state-based
trigger.

If PN 8

after 3̃8,9+<−−−−−−−−−→ PN 9+< is the delay edge of PN 8 , the transient solution ®c ′
8 at time 28 =

3̃8, 9+< is calculated. Otherwise, let ®c ′
8 be the steady-state subprobability vector from the initial

subprobability distribution ®c8 .

5.4.2.2 Outgoing subprobability computation

For each edge PN 8

on 4̃8,9+ℓ weight F̃8,9+ℓ−−−−−−−−−−−−−−−−−→ PN 9+ℓ the vector ®c ′′
8, 9+ℓ is calculated by distributing sub-

probability mass from ®c ′
8 . If 4̃8, 9+ℓ holds in<0 , then ®c ′′

8, 9+ℓ [0] = ®c ′
8 [0]. If there are multiple such

ℓ , the values are distributed in proportion to F̃8, 9+ℓ (<0).
The remainingmass is ®c ′′

8,∗ = ®c ′
8 −

∑<+1
ℓ=0 ®c ′′

8, 9+ℓ . If there is a delay edge from PN 8 , let ®c ′′
8, 9+< = ®c ′′

8,∗.
Otherwise B8 = ®c ′′

8,∗ · ®1) is the probability of getting stuck in the phase PN 9 . If PN 9 is a final phase,
B 9 is added to the probability of successful mission completion.

Now the initial subprobability vectors of the subsequent phases PN 9+ℓ are computed. For each
update action 0̃ (D )

8, 9+ℓ , a matrix� (D )
8, 9+ℓ shifts the subprobability masses according to the reassignment

of token counts. Thus �8, 9+ℓ =
∏

D �
(D )
8, 9+ℓ expresses the whole action sequence ®̃U8, 9+ℓ .

91



5. Creating phased-mission models by view transformations

Table 5.1: Measurement results

initial phase total phases

# |PN 0 | time/ms phases
∑

8 |PN 8 | time/ms ph.t./ms

1 41 186 8 415 303 16.6

2 78 185 20 1818 426 12.7

4 152 213 68 11 278 1022 12.1

6 226 247 148 35 530 2150 12.9

8 300 281 260 81 678 3955 14.2

10 374 319 404 156 826 6267 14.8

12 448 353 580 268 078 9346 15.5

14 522 390 788 422 538 13 729 16.9

16 596 426 1028 627 310 19 481 18.6

The horizontal trace ∼8, 9+ℓ also causes a shift of subprobabilities. Removal of places causes
the summation of masses, while the addition of a new place ? assigns the masses to markings of
PN 9+ℓ where ? bears its initial token count. This shift is expressed by the matrix )8, 9+ℓ .

The matrix Λ8, 9+ℓ = �8, 9+ℓ)8, 9+ℓ converts ®c ′′
8,∗ to the initial subprobability vectors ®c 9+ℓ =

®c ′′
8,∗Λ8, 9+ℓ of PN 9+ℓ . Analysis can be performed recursively on the child phases.

5.5 Evaluation

We implemented a domain-specific language for mission automata, as well as the mission
automaton unfolding and erasure algorithm from Section 5.4, using the VIATRA incremen-
tal transformation engine [VB07; Ber+15; Ujh+15] for EMF models and the Xtext language
engineering framework.

We evaluate the scalability of our analysis model construction approach in the context of
incremental analysis model transformations. Reachable configurations are explored during the
unfolding in a depth-first manner. Exploiting the transaction support of EMF both forward
moves and backtracking modify the architecture model in-place. Hence the static transformation,
which is also powered by VIATRA, can be executed in a change-driven style.

Setup: The mission automaton from Fig. 5.7 was unfolded with scaled versions of Fig. 5.3,
such that the initial architecture contains # copies of the machinesm1 andm2, respectively. The
query qCanReplace matches # 2 pairs of machines, thereby increasing the number of phases.

The experiments were ran on a computer with an Intel Core i7-5700HQ 2.7GHz CPU with
4 GiB of heap space reserved for the Java 1.8.0u144 virtual machine. Each experiment was
repeated 30 times after 10 warm-up repetitions.

Results: Table 5.1 presents the number of elements in the Petri nets obtained by unfolding,
as well as the median running times. We report the running time of the transformation of the
initial phase, including the execution of the static transformation in batch mode. We also report
the total running time, and the average incremental execution time for the non-initial phases
(ph.t.).

Discussion: The sizes of the analysis models for a single phase grew linearly as machines
were added to the architecture, while the number of phases in the upper level model grew
quadratically, along with the execution time of the full PMS construction. The unfolding could
take advantage of incremental execution of the static transformation. Thus no more than 20ms

92



5. Creating phased-mission models by view transformations

per non-initial analysis model was taken. Total execution time remained below 20 seconds.

5.6 Related work

Methods for the construction of stochastic analysis models are widespread in the evaluation
of architecture models, especially for component-based design [Koz10; BMP12]. The Palladio
component model [BKR08] was suggested as a specialized modeling language for performance
prediction. Recently, the Renew metamodeling framework [MCH16] was proposed for adding
Petri net semantics to modeling languages. In [Get+18] co-evolution of architectures and fault
trees were investigated.

A dependability-driven designmethodology for embedded systemswas suggested in [Sur+10],
while [Hoa+17; RSV17] investigated adaptation for dependability by agent-based planning.

The two main groups of dependability analysis techniques for phased-mission systems are
state-space based and combinatorial approaches [WT07]. State-space based analysis may happen
by solving stochastic models for individual phases and propagating the results [SRA92; MB99],
as well as with deterministic and stochastic Petri nets models [MB01]. Combinatorial approaches
can take advantage of efficient data structures [Xin07; WT07], but may require more restricted
models, such as fault trees or block diagrams.

Combinations of CTMCswere investigatedwith timed and hybrid automata [DHS09; Che+11a;
Bal+15]. While these approaches are significantly more expressive for linear-time properties
than ours, they do not support the reconfiguration of the model.

5.7 Conclusions

We presented (1) a mission automaton formalism for specifying reconfigurations and fault
handling in production system architectures and (2) a mapping from these to stochastic PMS
analysis models. The dependence between the phase transitions in the mission and the events
represented in the analysis model is abstracted by incorporating run-time attributes into the
architecture model. According to our empirical evaluation, good scalability can be provided by
our incremental analysis model construction.

Possible extensions include relaxing the separation between the static and the run-time
attribute dependent parts of the mission automata, for example, by adopting stochastic timed
automata model checking techniques [Che+11a]. Graph-based state encoding [HHV15] during
mission unfolding may reduce the PMS from a tree to a directed graph, potentially decreasing
the number of phases to be analyzed by merging equivalent phases.

93





Chapter6
Worst-Case Execution Time

calculation for query-based monitors

Runtime monitoring has become a key technique in the assurance of safety-critical and intelligent
cyber-physical systems (CPS) such as autonomous vehicles [Pek+20] (e.g., self-driving cars,
drones) where traditional upfront design time verification is problematic due to the dynamically
changing environment and the data-intensive nature of the system. However, it is an open
challenge how to align real-time requirements with the ability to capture the highly dynamic
operation context of the system. A promising line of research aims to leverage high-level,
model-based techniques to manage system complexity [JDR17; TH19].

In traditional embedded systems, runtime monitoring programs are integral components
of the system that analyze events and execution traces [Bar+18] in order to detect potentially
critical situations that violate a requirement. Since this requires formal precision to capture safety
requirements, logic-based formalisms (e.g., propositional logic, temporal logic) are frequently
used to specify execution traces. Furthermore, monitoring programs can be automatically
synthesized from such specifications that are ready to be used in traditional hard real-time
systems without compromising task schedulability and real-time properties of the existing
program [Pik+10; HR02].

However, existing runtime monitoring approaches used in safety-critical applications have
certain limitations, which are increasingly problematic for the new generation of data-intensive,
intelligent, and self-adaptive, yet safety-critical CPSs. First, the moderate expressiveness of the
specification language [Hav15] makes it difficult for engineers to capture and understand complex
rules. Moreover, while safety-critical programs typically use statically allocated data with bounded
input sizes and they conservatively avoid many programming language constructs, dynamically
evolving data and advanced language constructs are inherent parts of data-intensive programs.

Recent advances in runtime monitoring aim to overcome these limitations by (1) offering
high-level and expressive query-based [DBB18; Búr+18] or rule-based [Hav15] formalisms to
capture the properties to be monitored, and (2) using runtime graph models as an in-memory
knowledge base which capture dynamic changes in the system or its environment at a high-level
of abstraction [Búr+18; Har+19]. Such data-driven safety monitors derived from high-level
specifications can analyze aggregated changes triggered by complex sequences of atomic events
by evaluating queries over a continuously evolving data model. For example, in the railway
domain, queries can check if a path exists between two points along a railway track, or identify
cargo waiting at stations for more than a specified duration. As such, query-based monitoring
programs use a network of linked objects as data structures and exhibit heavily input-dependent
and semantic-aware complex control and data flow.

To enable the use of data-driven safety monitors in hard real-time systems, the computation

95



6. Worst-Case Execution Time calculation for query-based monitors

of safe worst-case execution time (WCET) estimates is required. While recent research has
investigated data-driven runtime monitors for intelligent and critical CPSs in a distributed envi-
ronment [Búr+18; Har+19; DBB18], and various testing approaches have been proposed [Abd+18;
SNV18], the timeliness aspect of the problem has been neglected. In fact, only very few initial
ideas are available [TGS06], which suggest limiting the maximum graph size and employing
optimized query plans. A wide range of existing timing analysis techniques and tools (e.g.,
aiT [FH04], Chronos [Li+07], OTAWA [CS06], and SWEET [Lis14]) can provide safe and tight
WCET bounds for traditional critical embedded software. However, there is a high degree of
inherent design-time uncertainty present in data-driven monitoring programs. In particular,
the unknown contents of the runtime knowledge graph capturing the system and its operating
environment constitutes an enormously large input space which can compromise the accuracy
of existing techniques. Therefore, novel techniques are needed to complement existing WCET
analysis techniques to efficiently incorporate domain-specific restrictions for program inputs on
a high-level of abstraction and automatically incorporate this domain knowledge as flow facts.

In order to obtain safe and tight WCET bounds for data-driven runtime monitors, major
challenges in timing analysis need to be tackled. (i) First, domain-specific flow constraints
pose several complex restrictions on the program flow, but the respective flow facts need to be
manually formulated and the program needs to be annotated by experts. Such additional program
flow information largely helps to enhance the precision of safe WCET bounds in existing timing
analyzers. However, there are no generally applicable methods to automatically obtain such
flow facts by exploiting high-level, domain-specific information and constraints on program
flow during timing analysis. Specifying the flow facts manually is highly error-prone and the
resulting annotations need to be updated after subsequent modifications to the program [Abe+15].
(ii) Furthermore, runtime graph models have varying underlying structure and memory demands
which makes WCET analysis problematic since the worst-case graph structure needs to be
considered regardless of domain-specific constraints. While memory can be preallocated to
allow the timing analyzer to produce WCET bounds [HR09], but a WCET estimate from the size
of the preallocated memory for graph data without appropriate flow facts would still be overly
conservative. Moreover, the contents of the runtime model are regularly updated at runtime.
Therefore, value analysis has no upfront access (at design-time) to the data that the reserved
memory space will store. (iii) Finally, traditional WCET analysis challenges also need to be
tackled: detailed information is required about the executable binary and execution platform,
including precise memory, pipeline, and cache descriptions [Wil+08].

Contributions This paper aims to address WCET estimation in the challenging setting of
query-based runtime monitoring programs. In particular, we present the following contributions.

1. We adapt query-based runtime monitoring programs derived from high-level graph query
specifications [Búr+18] to real-time platforms (Section 6.1.3).

2. We provide a novel high-level static analysis technique for query-based monitors to
estimate execution time on a given runtime model. The approach provides precise flow
facts by counting the number of basic block executions during query evaluation w.r.t. the
given model even if exact memory allocation information is unavailable. Moreover, it
combines such flow facts with constraints obtained from existing low-level analysis tools
(Section 6.3.3).

3. We estimate the WCET of query-based programs by estimating execution time over
designated witness models. Such witness models have the highest estimated execution
times for graph query programs executing over any input models up to a predefined model
size and domain-specific constraints, and they are derived by a state-of-the-art graph
solver [SNV18] (Section 6.3.4).

96



6. Worst-Case Execution Time calculation for query-based monitors

Figure 6.1: Runtime monitoring by graph queries

4. We perform an extensive experimental assessment of query evaluation times over a variety
of graph models executed on an industry-grade real-time platform, and we compare our
WCET estimates with those provided by two popular timing analyzers (OTAWA and aiT)
(Section 6.4).

Novelty Our technique complements existing WCET estimation methods by extracting pro-
gram flow information from domain-specific constraints of the abstract input space on top of
existing constraints derived by traditional timing analysis. To our best knowledge, our approach
is the first to provide safe and tight WCET bounds of real-time graph query programs by ab-
straction refinement using state-of-the-art model generation techniques. This enables the use
of query-based runtime monitoring programs in a real-time context by providing safe WCET
estimates for a desired set of input models satisfying domain-specific constraints.

The contents of this chapter are based on the journal paper [j5]. Code generation for embed-
ded query programs (Section 6.1) and the concept of witness models are the contributions of
Márton Búr [Búr+20; Búr21][j5].

6.1 Query-based runtime monitors1

In this section, we provide an informal overview of query-based runtime monitors, while their
formal treatment is deferred to Section 6.2.

6.1.1 Running example: the MoDeS3 CPS Demonstrator

Our key concepts are illustrated in the context of the open source Model-Based Demonstrator for
Smart and Safe Cyber-Physical Systems (MoDeS3) [Vör+18b] platform, which showcases various
challenges of modern intelligent yet safety-critical CPS applications. The demonstrator (see
Figure 6.1) is a model railway system with an added layer of safety to prevent train collision
and derailment using runtime monitors. The railway track is equipped with several sensors and
actuators, which are represented by black triangles in the lower part of Figure 6.1. Train shunt
detectors can sense when trains pass by on a particular segment of the track, while direction of
turnouts can be read and set.

The system is managed by a (distributed) monitoring service running on a network of het-
erogeneous computing units, such as Arduinos, Raspberry Pis, BeagleBone Blacks, etc. Relevant
runtime information gained from sensor reads (e.g., the occupancy of a segment, or the status of

1This section was directly adapted from [Búr21][j5] and does not comprise the contribution of the author of this
thesis. Nevertheless, we include it for completeness and to provide background for query-based runtime monitors in
order to make the thesis self-contained.

97



6. Worst-Case Execution Time calculation for query-based monitors

Segment

id : uint16_t

Turnout

Train

id : uint16_t
speed : double

[1] straight [1] divergent

[0..2] connectedTo

[1] location

[0..1] occupiedBy

(a) Metamodel of the MoDeS3 domain

tu0
Segment=1
Turnout=1

s2
Segment=1

tr1
Train=1

tu1
Segment=1
Turnout=1

tr0
Train=1

s1
Segment=1

s3
Segment=1

s0
Segment=1

∼

connectedTo
straight

∼

connectedTo

∼

connectedTo
∼

connectedTo
divergent occupiedBy

∼

location

straight

divergent
∼

connectedTo location
∼

connectedTo

occupiedBy

connectedTo

∼
connectedTo

x1 = 2

x2 = 0

(b) Concrete model representing a possible runtime
snapshot

Figure 6.2: An instance (concrete) model and a partial model in the MoDeS3 domain

a turnout) is uniformly captured in an in-memory runtime graph model, which is also deployed
on the platform.

Safety monitors are formally captured as graph queries. Alerts from the monitoring services
may trigger control commands of actuators (e.g., to change turnout direction) to guarantee
safe operation. The monitoring and control programs are running in a real-time setting on the
computing units.

While the MoDeS3 platform can demonstrate various challenges of CPSs, this paper exclu-
sively focuses on the real-time aspect of query-based runtime monitoring programs deployed to
some embedded devices with limited resources (memory, CPU, etc).

6.1.2 Graph models at runtime

6.1.2.1 Graph models

The models@run.time paradigm [BBF09] facilitates the capture of runtime knowledge about
the system and its environment as a (typed and directed) graph model continuously maintained
at runtime for the system. Such graphs are dynamically changing in-memory data structures
which encode domain-specific instance models typed over a domain metamodel, which captures
core concepts (classes) in a domain and the relations (references) between those concepts.

Example 6.1 The domain concepts of the MoDeS3 runtime model are captured in a meta-
model excerpt shown in Figure 6.2a using the Eclipse Modeling Framework (EMF) nota-
tion [Ste+09]. One domain concept is Train. Class Segment represents a section of the railway
track with the connectedTo reference which describes what other segments it is linked to
(up to two). Moreover, each train maintains a location reference to a segment to describe its
current position. Instances of class Segment record if they are occupied by a train with the
occupiedBy reference. Moreover, Turnout is a special Segment that can change its connections
between straight and divergent segments.

A runtime (instance) model captures a snapshot of the underlying system in operation [BBF09;
SZ13]. Relevant changes in the system are reflected in the runtimemodel and operations executed
on the runtime model (e.g., setting values of controllable attributes of objects or updating links
between objects) are reflected in the system itself (e.g., by executing scripts or calling services).
In this work, we use concrete (graph) models to formally capture runtime model snapshots.

98



6. Worst-Case Execution Time calculation for query-based monitors

1 typedef struct {

2 uint16_t segment_id;

3 Train *train;

4 Segment *connected_to [2];

5 uint8_t connected_to_count;

6 } Segment;

Listing 6.1: Segment class

1 typedef struct {

2 uint16_t train_id;

3 double speed;

4 Segment *location;

5 } Train;

Listing 6.2: Train class

1 struct Modes3ModelRoot {

2 Segment segments[SEGMENTS ];

3 uint16_t segment_count;

4 Train trains[TRAINS ];

5 uint16_t train_count;

6 } runtime_model;

Listing 6.3: Graph model root

Example 6.2 Figure 6.2b shows a concrete model in a graphical syntax. The graph has six
Segment objects (including two Turnouts) with their respective connectedTo links. Turnouts
tu0 and tu1 can switch between segments s1 and s2 (see their straight and divergent edges).
In the depicted state, both turnouts are switched to s2 and the trains tr0 and tr1 are located on
s2 and s2, respectively.

6.1.2.2 Graph data structures in embedded systems

Runtime monitors captured by graph queries are continuously evaluated over the runtime models.
This section informally summarizes our assumptions and requirements about such programs
while the theoretical background is introduced in Section 6.2.

For data-driven monitors, the structure of the underlying graph model directly impacts the
performance of query evaluation. Since an embedded device may have limited available CPU
and memory resources, a lightweight data structure is needed to efficiently capture runtime
graph models. While the in-depth discussion of such a graph data structure is out of scope for
this paper, we make the following assumptions about the supported operations of the underlying
graph:

• Dynamic element creation and deletion. The runtime model serves as the knowledge
base about the underlying system and its environment. For this reason, it needs to
accommodate graph models without a theoretical a priori upper bound for model size.
Based on [HR09], one way to support this is to allocate the maximum amount of memory
that is physically possible to be used for storing the graph. However, only the allocated
memory is determined at compile time, the type (and distribution) of objects stored in the
graph is runtime information.

• Indexing of objects by type using unique identifiers. As query evaluation typically
starts by iterating over all elements of a given type or accessing specific objects, it necessi-
tates efficient object access, e.g., by maintaining a real-time index for memory resident
data [CK96].

• Navigability along edges. Query evaluation often navigates along the edges of selected
objects to find further appropriate variable substitutions for unbound query variables.
This feature can be supported by, e.g., maintaining direct pointers to reachable objects.

It is also important to note that the same graph model can be represented in memory in
many ways, because different placements of the same data can cause different run times. For
example, two memory images of the same graph may differ in the order the objects are stored
in the array. For this reason, two different in-memory representations of the same graph may
not necessarily yield identical run times, which must be considered when computing WCET of
graph query programs.

Example 6.3 Listing 6.1 and Listing 6.2 show a possible C implementation of data structures
for Segment and Train classes in the metamodel of Figure 6.2a. Line 2 in Listing 6.1 and lines
2 and 3 in Listing 6.2 are fields created from respective attributes present in the metamodel,

99



6. Worst-Case Execution Time calculation for query-based monitors

1 pattern closeTrains(s, e) {

2 Train.location(_t, s);

3 Segment.connectedTo(s, m);

4 Segment.connectedTo(m, e);

5 Segment.occupiedBy(e, _ot);

6 s != e

7 }

(a) Description of a query in VQL

ot
Train=1

t
Train=1

m
Segment=1

closeTrains(s, e)

s
Segment=1

e
Segment=1

connectedTo
location

connectedTo

«NEG» ∼

occupiedBy

(b) Graphical query presentation

iCT (B, 4) = ∃C : Train (C) ∧ Location (C, B) ∧ ∃< : ConnectedTo (B,<) ∧ ConnectedTo (<, 4) ∧ ¬(B = 4)
∧∃ot : OccupiedBy (4, ot)

(c) Graph query as logic predicate

Figure 6.3: Monitoring goal formulated as a graph query iCT for closeTrains

e.g., the speed attribute of class Train is represented by line 3. For each type, an id attribute
encodes the type of the object for indexing and model manipulation purposes. Uniqueness of
this attribute needs to be guaranteed at runtime to distinguish objects. Furthermore, in this
example, we implement graph edges as pointers (line 4 in Listing 6.2) or pointer arrays with
sizes (lines 4 and 5 in Listing 6.1). Representing links between objects with pointers is highly
efficient from a performance viewpoint.
Listing 6.3 shows how a simple graph model container Modes3ModelRoot can allocate static
memory for graph objects in C. The maximum memory used by the graph is preallocated
in lines 2 and 4 by the segments and trains arrays which have a length of the maximum
expected number of trains (denoted by the constant TRAINS) and the maximum expected
number of segments (SEGMENTS). The id attribute of a given object used for indexing these
arrays, i.e., encodes their positions in the arrays.

6.1.3 Graph query programs in real-time systems

Data-driven runtime monitors defined by graph queries can check structural properties of the
runtime model representing a snapshot of the system. In other words, they focus on the most
up-to-date data (maintained either by periodic updates with a certain frequency, or by certain
event-driven triggers [BBF09; SZ13]) available on the underlying system’s state at a given point
of time.

Classical event-based runtime monitors rely on some temporal logic formalism to detect
sequences of events occurring in the system at different points in time, while the underlying
data model is restricted to atomic propositions. As such, data-driven and event-based monitors
are complementary techniques. While graph queries can be extended to express temporal
behavior, our current work is restricted to (structural) safety properties where safety violations
are expressible by graph queries.

6.1.3.1 Graph Queries

A graph query is a declarative description of a model fragment to be identified by a set of variables
and a set of constraints (type, reference, and equality assertions) [Var+15]. A match of the query
is a binding of the query variables to objects in the model such that the constraints are satisfied.
In data-driven runtime monitors, such high-level descriptions allow us to automatically generate
and optimize the monitor program by adaptive query planning.

100



6. Worst-Case Execution Time calculation for query-based monitors

Algorithm 1: Code generation from search plans
1 Function CompileSearchPlan(sp, idx)is
2 if idx > sp.size() then return code for storing a match;
3 step = sp[idx]
4 matcherCode = ””
5 if step is extend then
6 for uv ∈ step.getFreeVariables() do
7 matcherCode +=
8 AddAssignmentFor(uv,

step.getConstraintFor(uv))

9 else if step is check then
10 matcherCode +=
11 AddIfFor(step.getAllVariables(),

step.getConstraint())

12 return matcherCode + CompileSearchPlan(sp, idx + 1)

Table 6.1: A possible search plan for
query closeTrains where free variables
are underlined

Constraint Step# Op. type

Train (t) 1 extend
Location (C, s) 2 extend
ConnectedTo (B,m) 3 extend
ConnectedTo (<, e) 4 extend
¬(B = 4) 5 check
OccupiedBy (4, ot) 6 extend

Example 6.4 Trains are required to keep long headway distances to ensure that they can
safely decelerate without collision [Eme11]. The safety case captured by the closeTrains (CT)
graph query represents a situation when the headway distance between trains located on
connecting segments is reduced below the safety limit. Any match of this query highlights
segments where immediate action (e.g., stopping the trains) is required. The declarative query
specification is presented in Figure 6.3a in a textual syntax to identify the violating situation
as a hazardous case. The query returns pairs of segments B, 4 where there is a train located
on segment B that is one segment away (i.e., there is a middle segment<) from a different
segment 4 , which is also occupied by a train. Any variables not appearing in the parameter
list of the query are existentially quantified.
Figure 6.3b shows the same query in a graphical presentation often employed by modeling
tools, and Figure 6.3c presents it as a first-order logic (FOL) formula iCT (discussed later in
Section 6.2.2).
In the runtime snapshot Figure 6.2b, the variable bindings {B ↦→ s2, 4 ↦→ s3} and {B ↦→ s3, 4 ↦→
s2} are matches of the closeTrains query.

6.1.3.2 Local search-based graph query evaluation

Among the many possible query evaluation strategies [Gal06], our runtime monitoring frame-
work uses local search-based query evaluation [Var+15] to find matches of monitoring over the
entire runtime model. This strategy at its core uses a tailored depth-first search graph traversal.
This keeps the memory footprint of the query evaluation algorithm constant. To obtain efficient
performance at runtime, query evaluation is guided by a search plan [Var+15], which maps each
constraint in the query to a single pair of 〈Step index,Operation type〉. In this tuple, Step index
specifies the order in which query evaluation should attempt to satisfy the respective constraint.
Operation type can be one of the followings:

• An extend operation evaluates a constraint with at least one free variable. Execution of
such operations requires iterating over all potential variable substitutions and selecting
the ones for which the constraint evaluates to 1.

• A check operation evaluates a constraint with only bound variables. Execution of such
operations determines if the constraint evaluates to 1 over the actual variable binding.

Example 6.5 Table 6.1 shows a possible search plan for the iCT query. Each row represents
a search operation. The first column shows which constraint is enforced by the given step
where free parameters at the start of the execution of the operation are underlined. The

101



6. Worst-Case Execution Time calculation for query-based monitors

second column shows the ordering of steps, i.e., the step index, and the third column shows
the search operation type (check or extend) which is based on the variable bindings prior to
the execution of the search operation: if the constraint parameters are all bound, then it is a
check, otherwise, it is an extend.

6.1.3.3 Implementations of query programs

Although constructing effective search plans for graph queries is a complex challenge, it is outside
of the scope of the current paper and has been formerly extensively studied (see, e.g., [Var+15]
for a possible solution). However, we present pseudo-code that generates embedded query code
from a search plan in Algorithm 1. The function CompileSearchPlan takes a search plan and a
search step index as parameters. Line 2 returns a code snippet to register a match if the provided
index is beyond the index of the final search step. Otherwise, the search step is extracted (line
3) and the variable matcherCode to hold the generated code is initialized to an empty string
(line 4). Then, the different operation types of the query search plan are translated to structured
imperative code:

• Each extend operation binds all free variables of the respective constraint (lines 5–6). For
each variable, this translates to either a single assignment or a for loop iterating over a set
of candidate variable bindings, depending on the multiplicity of the respective navigation
edge (reference constraint) (lines 7–8).

• Each check operation (line 9) is mapped to an if statement to check if the current
variable binding satisfies a given condition created from the query constraint (lines 10–11).

Finally, in line 12, the generation continues recursively appending the code generated from the
subsequent steps to the result. The query code for the entire search plan sp can be generated
by calling CompileSearchPlan(sp, 1). As a result, the source code contains a deep hierarchy of
embedded for-loops and if-statements based on the ordering of constraints prescribed by the
search plan.

Besides obtaining a WCET, we also need to estimate the number of matches of a query to
allocate appropriate space in memory in advance. In the case of runtime monitors of safety
properties, we can assume that only a few violating matches will be detected [Var+18], thus
the query result set is expected to be small and memory required for storing matches can be
reserved at compile time.

Example 6.6 Listing 6.4 shows the C code generated from the query specification of close-
Trains. Assuming that a global variable model points to the root of the entire graph model
including its up-to-date model statistics, calling the function close_trains_matcher with a
pointer to the result set structure results will compute and store all matches over the model
in results.
In the example, initially all variables are assumed to be free, as indicated in line 2 with NULL

values, because we aim to find all matches in the entire model. In line 3, the size of the result set
is initialized to 0. The for loop in line 6 represents step 1 from the search plan (see Table 6.1)
and iterates over all trains in the model, binding the variable vars.t to all possible objects in
line 7. Lines 8–10 together represent search step 2. In line 9, vars.s is assigned a segment
referred by vars.t via a single location link. If such a segment exists in line 10, execution
continues with the third search operation that is mapped to lines 11–14, which iterates over
segments connected to vars.s and assigns them to vars.m, one at a time. The next step in
lines 15–18 does the same but with the connecting segments of vars.m and assigns them to
vars.e. Search step 5 is a check, which is mapped to lines 19–20 to ensure that the segments
referred by vars.s and vars.e are not the same. The final step of the search plan is mapped
to lines 21–23. Here the train occupying the segment stored in vars.e is assigned to vars.ot.

102



6. Worst-Case Execution Time calculation for query-based monitors

1 void close_trains_matcher(CloseTrainsMatchSet *results) {

2 CTVars vars = {t=NULL , ot=NULL , s=NULL , m=NULL , e=NULL}

3 int match_cntr = 0;

4 // Constraint: ∃C : Train(C )
5 int loop_bound0 = model ->train_count;

6 for (int i0 = 0; i0 < loop_bound0; i0++) {

7 vars ->t = model ->trains[i0];

8 // Constraint: Location(C, B )
9 vars ->s = vars ->t->location;

10 if (vars ->s != NULL) {

11 // Constraint: ∃< : ConnectedTo(B,<)
12 int loop_bound1 = vars ->s->connected_to_count;

13 for (int i1 = 0; i1 < loop_bound1; i1++) {

14 vars ->m = vars ->s->connected_to[i1];

15 // Constraint: ConnectedTo(<,4 )
16 int loop_bound2 = vars ->m->connected_to_count;

17 for (int i2 = 0; i2 < loop_bound2; i2++) {

18 vars ->e = vars ->m->connected_to[i2];

19 // Constraint: ¬(B = C )
20 if (vars ->s != vars ->e) {

21 // Constraint: ∃ot : OccupiedBy(4, ot )
22 vars ->ot = vars ->e->train;

23 if (vars ->ot != NULL) {

24 // Register match

25 results ->matches[match_cntr ].s = vars ->s;

26 results ->matches[match_cntr ++].e = vars ->e;

27 } } } } } }

28 results ->size = match_cntr; }

Listing 6.4: Source code generated for query closeTrains

Figure 6.4: CFG of
example query program

If such a train exists, a match is registered by assigning the corresponding variable values
to parameter variables in a new match (lines 24–26) and incrementing the matches found
counter match_cntr. The execution concludes with saving the number of matches (line 28).
Static analysis of the query code itself in Listing 6.4 would not impose any restrictions on
line 20 despite the fact that the domain-specific constrains prescribe connectedTo links to be
symmetrical. Therefore, at least every other execution of line 20 will jump back to line 17
instead of proceeding to line 22, yielding a flow constraint that is not discoverable by analysis
of the code only.

Cyclomatic complexity (CC) is frequently used as a metric in safety-critical software to esti-
mate code complexity [Rie17]. As a general recommendation, code with high CC is traditionally
avoided in a safety-critical system as it requires extra efforts to test and maintain. However, the
derived imperative source code of data-driven monitoring programs is inherently complex even
for small queries, which is largely attributed to the declarative nature of query specifications.
For example, the CC of Listing 6.4 is 7, which already indicates substantial complexity.

While modern WCET analyzers can analyze complex code fragments, they heavily rely
on manual annotation of the code (loop bounds, in particular) and design time information
about variable values to be able to come up with an estimate that is both safe and tight. A key
contribution of the current paper is to complement the existing WCET analysis by providing
means to automatically exploit domain-specific restrictions of input data and tighten the resulting
WCET estimate. For data-driven monitors, this is a key step in order to enable their use in a
safety-critical context.

6.2 Formal background

This section provides the formal background for the static analysis of data-driven runtime
monitors, introduces definitions from traditional IPET-based approaches for WCET estimation,

103



6. Worst-Case Execution Time calculation for query-based monitors

and revisits the state of the art of domain-specific graph modeling and graph model generation.

6.2.1 Implicit path enumeration technique for estimating WCET

Timing analysis frequently relies on the Implicit Path Enumeration Technique (IPET) [LM97]
that uses the control flow graph (CFG) of a program to estimate the WCET. This section revisits
definitions from [PS97; KKZ13] to introduce this classic WCET estimation approach.

Definition 6.1 A program is a pair 〈BB, Loops〉, where BB is the set of basic blocks and Loops
is the set of (well-structured) loops. Each loop ℓ ∈ Loop has a header bbℓ,ℎ ∈ ℓ , while the rest
of its blocks bb8 ∈ ℓ constitute its body.

Definition 6.2 A weighted control flow graph corresponding to a program 〈BB, Loops〉 is a
tuple CFG = 〈+ , �, B, C,F, tr〉, where

• + is a finite set of nodes;
• � ⊆ + ×+ is the set of edges;
• B and C ∈ + are the program start and end nodes, respectively;
• F : � → ℕ is the weight function that assigns execution times to the edges;
• tr : + → BB is the traceability function that maps nodes to originating program blocks.

In the simplest case, + = BB and tr is the identity function. However, even on simple
embedded processors, basic block execution times may vary due to microarchitectural effects
(e.g., pipeline or cache state), which necessitates representing basic blocks with multiple nodes
to encode context-sensitive execution times. The extended CFG encodes information from a
low-level timing analysis. For example, the VIVU approach [Mar+98] addresses this concern by
virtual loop unrolling and creates additional nodes and edges in the CFG to explicitly model the
first executions of loops.

Definition 6.3 Every execution of the program (i.e., program trace) can be represented by
a path c = 〈41, . . . , 4<〉 in the CFG from B to C . Let c#4 denote the frequency of the edge 4
appearing in c . The program execution time g (c) can be estimated by the sum of the product
of weights and frequencies of edges, i.e., g (c) = ∑

4∈� F (4) · c#4 .

The goal of timing analysis is to find the path with the longest possible execution time of
the program. Instead of explicitly enumerating all possible paths in the CFG, Puschner and
Schedl [LM97] create a system of linear inequalities whose solutions over-approximate the set
of possible paths and define an integer linear programming (ILP) problem for estimating WCET.

An ILP can be derived from the CFG 〈+ , �, B, C, tr〉 as follows (we will use the notations from
Section 2.3.1 for representing ILPs). Let f : � → X be a function that associates variable symbols
to CFG edges. In the system of linear equations S, each feasible execution path % is associated
with a solution :c such that :c (f(4)) = c#4 . Thus, linear constraints on variable obtained as
f(4) restrict frequency of 4 in all feasible paths. Moreover,

∑
4=〈=1,=2 〉∈�,tr (=1 )=bb8 :c (f(4)) is the

number of times the basic block bb8 ∈ BB was executed in c .

• We add
∑

4=〈B,=〉∈� f(4) = 1 and
∑

4=〈=,C 〉∈� f(4) = 1 to S, because the program is entered
and exited exactly once.

• Except for B and C , each node is entered and exited the same number of times, so we add∑
4=〈=1,=2 〉∈� f(4) −

∑
4=〈=2,=3 〉∈� f(4) = 0 for each =2 ∈ + \ {B, C}.

• Any additional flow facts regarding the execution frequencies of program parts (e.g., loop
execution counts) are added in the form

∑
48,9 ∈� 08, 9 · f(48, 9 ) ≤ ~ 9 .

• For each edge 4 ∈ �, we also have −f(4) ≤ 0, since the execution frequency is non-negative.

104



6. Worst-Case Execution Time calculation for query-based monitors

tu0
Segment=1
Turnout=1

s2
Segment=1

trnew
Train=1

tu1
Segment=1
Turnout=1

s1
Segment=1

s3
Segment=1

s0
Segment=1

∼
connectedTo

straight
∼

connectedTo

∼occupiedBy occupiedBy

location

location

connectedTo
connectedTo

∼
location

connectedTodivergent

occupiedBy

straight

divergent connectedTo
∼

location

occupiedBy connectedTo

∼
occupiedBy

connectedTo

location

connectedTo

∼

location

connectedTo

occupiedBy

�Train(trnew ) ≤ 3

#[ctInvalid(∗, ∗) ]% = 0 Figure 6.5: Example partial model

We have an ILP max
∑

4∈� F (4) · f(4) subject to S. The objective function 6(:) overapproxi-
mates the execution time of % . Therefore the value 6(:∗) of any solution :∗ is a WCET bound.

6.2.2 Modeling and graph queries

In order to extend static analysis of data-driven graph query programs with domain-specific
flow information, we will formally capture metamodels by a logic signature and their instance
models as logic structures following [SNV18][j1].

We rely on scoped partial models from Section 2.3 to represent runtime models. In particular,
runtime snapshots of a system are captured by concrete (instance) models, which contain no
uncertainty or multi-objects and truth values are restricted to 1 and 0. During the reasoning
about the WCET of graph query programs, scoped partial models that are not concrete

A metamodel may also include binary attribute symbols such as in [Búr+18]. However, their
handling is analogous to binary relation symbols, thus their discussion is excluded from here.

Example 6.7 For the metamodel of Figure 6.2a, Train, Segment, Turnout ∈ ΣC are unary
class predicates, and location, occupiedBy, connectedTo, straight, divergent ∈ ΣR are binary
relation predicates. Out of these, Train is numerically tracked, i.e., Train ∈ ΓC. We also have a
binary predicate symbol ctInvalid ∈ ΓF ⊆ ΣF (U (ctInvalid) = 2) that is numerically tracked.
Figure 6.5 shows a partial model % = 〈O% ,I% ,S% 〉 conforming to the MoDeS3 metamodel.
Objects are drawn as boxes with the values of the interpretations I% (C8) of the class symbols
written inside, while edges are drawn as arrows labelled with the relation symbols R9 and the
equality symbol ∼. Solid edges correspond to 1 logic values, dashed edges are ½ logic values,
and 0 logic values are omitted. Uncertain existence ε is shown with a dashed outline.
The switching direction of the turnouts tu0 and tu1 is unknown. Additionally, there are no
concrete trains on the track, but amulti-object trnew represents all trains and their potential loca-
tions. Formally, I% (ε) (s0) = I% (∼)(s0, s0) = I% (Segment) (s0) = I% (connectedTo) (s0, tu0) =
1, but I% (connectedTo) (tu0, s1) = ½. Because I% (ε) (trnew) = I% (ε) (trnew, trnew) = ½, trnew is
a multi-object that may stand for any number of Train instances (even 0). The location of trnew
is also uncertain, new trains may be located on any Segment or Turnout.
The system of linear inequalities S% = {�Train(trnew) ≤ 3, #[ctInvalid(∗, ∗)]% = 0} is shown in
the lower right corner of the figure.

Concrete models are obtained from partial models by a series of refinements [SFC12], which
add further information by setting unknown logic values ½ to 1 or 0, while known 1 and 0 values

105



6. Worst-Case Execution Time calculation for query-based monitors

remain unchanged. This is captured by the refinement relation - < . B (- = ½) ∨ (- = . ).
During model generation, refinements are carried out until a concrete model is reached.

Example 6.8 The concrete model" in Figure 6.2b is a refinement of the partial model % in
Figure 6.5: % <abs " . The abstraction function maps abs(tr0) = trnew and abs(tr1) = trnew, i.e.,
newly added trains are refinements of the train multi-object. Any other object is mapped by
abs to itself, i.e., the identities of the rest of the objects remained unchained.
We may also see that the directions the turnouts were set, e.g., I% (connectedTo) (tu0, s1) =
½ < I" (connectedTo) (tu0, s1) = 0. Moreover, S" � S% .

The formal definitions of metamodel and instance model enable the formulation of first-order
logic (FOL) predicates, which can be evaluated as graph queries over the logic structure of an
instance model (Definition 2.29).

Note that in our context, a match of a query will typically represent a violation of a well-
formedness constraint of the domain or a hazardous situation with respect to a safety property.

Definition 6.4 The match set of a query predicate i with free variables E1, . . . , E= is the set
Matches(",i) =

{
/ : {E1, . . . , E=} → O" | JiK"

/
= 1

}
. One element in this set is called a

match, while"#i = |Matches(",i) | denotes the size of the match set.

Note that if " = 〈O" ,I" ,S"〉 is a concrete model over the signature 〈Σ, Γ, U〉, and "
compatible with the theory T = 〈3, E〉, then

• if i ∈ E, then"#i = 0; and
• if F ∈ Γ and 3 (F) = i , then S" � #[F(∗, . . . , ∗)]" = "#i .

Example 6.9 Consider the graph query iCT for the “close trains” hazard formalized as a FOL
expression iCT in Figure 6.3c. In the concrete model" in Figure 6.2b, JiCTK"B ↦→s2,4 ↦→s3 = 1. In
the partial model % in Figure 6.5, JiCTK%B ↦→s2,4 ↦→s3 = 0 due to the uncertain existence of the trnew
multi-object. In" , iCT has two matches Matches(",iCT) = {{B ↦→ s2, 4 ↦→ s3}, {B ↦→ s2, 4 ↦→
s3}}. Therefore,"#iCT = 2.

6.2.3 Well-formedness and scope constraints

In order to make static analysis of data-driven monitors more precise, we can add additional
domain-specific information into models as constraints to exclude impossible or irrelevant
runtime snapshots from consideration. To this end, we will use theories of predicate symbol
definitions and error patterns as defined in Definition 2.31.

Additionally, numerical scope constraints restrict the sizes of models to conform with alloca-
tion requirement in monitor programs and guide the analysis toward models that are relevant in
practice (e.g., the size of the model and the ratios between the number of objects of given types
match realistic scenarios).

Example 6.10 Consider the FOL predicate

ictInvalid(E1, E2) = connectedTo(E1, E2) ∧ ¬connectedTo(E2, E1)

and the theory T = 〈3, ∅〉, where 3 (ctInvalid) = ictInvalid.
The predicate ictInvalid selects connectedTo links that do not have a corresponding link in
the reverse direction. Since railway tracks can be traversed in both directions, we enforce a
symmetric ctInvalid relation by a well-formedness constraint encoded as ( �ctInvalid = 0) ∈ S% .
The concrete model" in Figure 6.2b is compatible with the theory T . As shown in Lemma 2.30,
" obeys the scope and well-formedness constraints prescribed in S% , since % < " .

Our work relies on the model generator presented in [SNV18] and Chapter 4, which was
proved to be complete and sound in [Var+18]. Informally, it is able to derive all concrete (instance)

106



6. Worst-Case Execution Time calculation for query-based monitors

Table 6.2: WCET analysis approaches for data-driven runtime monitor programs

Inputs Outputs

CL

Low-level analysis inputs︷                                        ︸︸                                        ︷
HW description + Query program WCET estimate

VAL HW description +

Value analysis inputs︷                                                                ︸︸                                                                ︷
Query program + Concrete model +Memory image

WCET estimate
for single memory image

DS" HW description +

Domain-specific high-level analyis inputs︷                                                            ︸︸                                                            ︷
Query program + Concrete model WCET est. for single model

DSΣ HW description + Query program + Constraints
WCET est. for all valid models
+ Witness model

DS% HW description + Query program + Partial model + Constraints
WCET est. for all refinements
+ Witness model

models in a domain (up to a designated size defined by the scopes) which satisfy the constraints
by exploring a state space of possible partial models along refinements.

6.3 Timing analysis of query-based monitors

Estimating the WCET of query-based monitors is a highly complex task which involves multiple
classic challenges of timing analysis. The runtimemodel of the system is a continuously changing
data structure that captures an up to date snapshot of the underlying running system. Hence, it
is not sufficient to analyze execution time on a single input model, but all models possible at
runtime must be considered.

However, the space of possible models is enormous. For example, in a metamodel with
3 reference types, there may be up to 23·25·25 = 21875 models with 25 objects. Thus, explicit
enumeration of graph models is intractable, which necessitates the use of abstractions.

Another major challenge is that query execution time is heavily data-dependent, i.e., the same
control flow of a query program may have substantially different run times based upon the
structural characteristics of the underlying graph model. Assuming some constraints on model
size (e.g., capped by available memory) and some general restrictions on model scope (e.g., there
are more segments than trains in any real model), a key open challenge is how to provide a model
where the execution time of a particular query program is maximal. In this work, we provide
witness models that maximize an estimate of the execution time, which aids in WCET analysis
and in identifying bottlenecks in query execution.

Moreover, a single model may be represented in memory in several isomorphic ways (Sec-
tion 6.1.2.2). During the runtime evolution of the graph, a particular snapshot might be reached
in any of its possible in-memory representations. Thus, WCET estimation even for a single
concrete input model must tackle the dependency of execution paths on the data representations.
As a single model of = objects has =! possible in-memory representations even if we only consider
inserting the objects into a single continuous linear array of = elements, explicit enumeration is
again intractable.

6.3.1 Comparison of timing analysis approaches

Table 6.2 illustrates the existing and proposed approaches of WCET analysis for query programs.
Classical (CL) analysis is based on binary code of query program and the characteristics of the
hardware platform, but does not consider structure and the well-formedness of the models.

107



6. Worst-Case Execution Time calculation for query-based monitors

Model spaceModel scope

Possible/Impossible model updates

Model within/outside the scope

"∗
%

"∗
Σ

Refinements of % Witness model within the scope

Figure 6.6: Classification of query input models and model updates from the perspective of
WCET analysis

Value analysis (VAL) can derive more precise WCET estimates for executing a query on a
single memory image (comprised of a single concrete model). However, it is unable to consider
equivalent in-memory representations of the same concrete model (i.e., different parts of the
model allocated to different spatial locations), or to cover all possible consistent concrete models,
thus it is unsuitable for the analysis of data-driven monitors.

To alleviate this issue, we propose three domain-specific (DS) WCET analysis methods for
data-driven monitors. We introduce the concept of witness models, which are consistent models
that are feasible inputs of the graph query program andmaximize the WCET estimate for all models
within the given scope. They serve as representative data to calculate WCET for any model within
the scope.

• First, we estimate WCET for a single concrete model (DS" ). The estimate is valid for all
in-memory representations of a given concrete model" .

• In the next case, the set of possible runtime snapshots is specified with metamodel 〈Σ, U〉
along with well-formedness and scope constraints (DSΣ). This WCET estimate is valid
for all possible runtime snapshots within the memory limits of the system, i.e., for all
consistent instances of the metamodel up to the size specified by the scope constraints.

• Thirdly, an initial partial model % may specify the set of possible runtime snapshots (DS% )
including static (known and concrete) and dynamic (uncertain at design time) parts of the
runtime model. The WCET estimate is valid for all possible refinements % < " of % .

Figure 6.6 sketches the model space of runtime graph models (represented with dots), i.e.,
the set of all input models. Possible changes made to a model at runtime (depicted as arrows)
result in a new model. To obtain a safe and tight WCET estimate for query programs, we
make some assumptions about realistic (and consistent) models captured in the form of a model
scope. If an initial partial model % is provided, the analysis is further restricted to its (valid)
refinements, thus inconsistent models are considered to be unrealistic. The witness model"∗

Σ
for the consistent instances of the metamodel and"∗

%
for the refinements of % are depicted as

blue stars in Figure 6.6.
The witness models"∗

%
may aid in iteratively refining the model scope. If the partial model

corresponds to a situation that is impossible at runtime, it indicates that the model scope was
specified in a too general way. We may exclude such situations by refining the partial model
% [Var+18]. However, care must be taken to avoid excluding feasible inputs and overfitting
the WCET estimate. If the witness model is a feasible input, it may be inspected to study the
characteristics and bottlenecks of the graph query program.

Example 6.11 Figure 6.7a shows the witness model "∗ for the WCET of the closeTrains
query for well-formed models with up to 7 objects in total (as model scope), out of which up
to 2 are Train instances. The corresponding WCET estimate is 1309 systicks. The model" ′

in Figure 6.7b has the same number of elements, but with a higher execution time estimate
of 1325 systicks. However, " ′ lies outside the model scope, because it is malformed due to
non-symmetric connectedTo references (e.g., s1 is connectedTo s2 but not vice versa).
Classical (CL) WCET estimation techniques cannot exclude" ′ from the analysis, and they

108



6. Worst-Case Execution Time calculation for query-based monitors

(a) Witness model "∗ yields execution estimate
of 1309 for query closeTrains

(b) Malformedmodel" ′ yields execution estimate
of 1325 for query closeTrains

Figure 6.7: Illustrating model generation problems for witness models

Specification
Query Query Plan Generated

Program
Linear Program

from IPET

HW Description

M
et
am

od
el

Basic Block
Predicates

Model

Precise
Flow Facts

WCET Estimate
for Single Model

<

<

Partial
Model

Well-Formedness and
Scope Constraints

Model
Generation Task

Extended Model
Generation Task

Witness Model

WCET Estimate for
All Refinements

DS"

DS%DSΣ

F

A B C

D
E

G

Figure 6.8: Workflow of WCET estimation for query-based monitors

would return a higher WCET estimate, while our novel DSΣ technique can restrict the analysis
to the model scope to return the correct estimate of 1309 systicks along with the witness"∗.

6.3.2 Architectural overview

Figure 6.8 presents the high-level description of our design time tasks to obtain a WCET estimate
in the DS" , DSΣ and DS% scenarios. The high-level inputs of the process include the query
specification, the target hardware description, and the well-formedness and scope constraints of the
domain.

First, a query plan (A) is constructed from the query specification, based on which the query
program (B) is generated according to Section 6.1.3. Our approach is complementary to IPET-
based WCET estimators and leverages the results of high- and low-level analysis in form of the
CFG (possibly after some loop unrolling) and the corresponding linear program (C).

In case of WCET estimation for a concrete model" (DS" )," is also provided as an input.
Based on the query plan and the generated monitor code, basic block predicates (D) are derived,
whose matches in the concrete model" correspond to executions of basic blocks in the monitor
program. We leverage these matches to construct precise flow facts (E) for IPET analysis in
Section 6.3.3. The resulting flow facts and WCET estimate consider all possible in-memory
representations of" .

For WCET estimation for any valid instance of a metamodel 〈Σ, Γ, U〉 (DSΣ), the initial partial
model %init is constructed according to Section 4.2.2. When a partial model % is already provided
as input (DS% ), it replaces %init as the initial partial model. Hence, along with the T of well-
formedness and scope constraints, we obtain a model generation task (F), whose solutions are

109



6. Worst-Case Execution Time calculation for query-based monitors

Algorithm 2: Basic block predicate construction
1 Function DerivePredicates(BB, lineTrace, planTrace) is
2 Ψ = ∅
3 for bb ∈ BB do
4 kbb = 1
5 Let ln1–ln4 be the source lines associated with bb in

lineTrace
6 for if and for statements st containing ln1–ln4 do
7 kbb = kbb ∧ StatementToLogic(st, planTrace)
8 Let E1, . . . , E< be the free variables ofkbb

9 Ψ = Ψ ∪ {kbb }
10 if bb is the header of the loop ℓ then
11 k ′

bb
= kbb ∧ StatementToLogic(ℓ, planTrace)

12 Let E1, . . . , E<+1 be the free variables ofk ′
bb

13 Ψ = Ψ ∪ {k ′
bb
}

14 return Ψ

Algorithm 3: Translate search plan to logic
1 Function StatementToLogic(st, planTrace) is
2 Determine the constraint implemented by st from

planTrace
3 if st implements extend ∃E8 : C(E8 ) then
4 return C(E8 )
5 else if st implements extend ∃E9 : R(E8 , E9 ) then
6 return R(E8 , E9 )
7 else if st implements check C(E8 ) then
8 return C(E8 )
9 else if st implements check R(E8 , E9 ) then
10 return R(E8 , E9 )
11 else if st implements check E8 = E9 then
12 return E8 = E9
13 else if st implements check ¬C(E8 ) then
14 return ¬C(E8 )
15 else if st implements check ¬R(E8 , E9 ) then
16 return ¬R(E8 , E9 )
17 else if st implements check ¬(E8 = E9 ) then
18 return ¬(E8 = E9 )

Algorithm 4: Precise flow fact construction for a single concrete model"
1 Function PreciseFlowFacts(BB, lineTrace, planTrace,CFG = 〈+ , �, B, C, F, tr 〉, f, ") is
2 Sflow = ∅,Ψ = DerivePredicates(BB, lineTrace, planTrace)
3 for bb ∈ BB do
4 if bb is a loop header then Sflow = Sflow ∪

{∑
4=〈=1,=2〉∈�,tr (=1 )=bb f (4 ) = "#kbb +"#k ′

bb

}
;

5 else Sflow = Sflow ∪
{∑

4=〈=1,=2〉∈�,tr (=1 )=bb f (4 ) = "#kbb

}
;

6 return Sflow

partial models within the analyzed model scope. We incorporate the basic block predicates (D)
into an extended signature 〈Σ′, Γ′, U ′〉 and an extended theory T ′ in Section 6.3.4, which forms an
extendedmodel generation task (G) for witnessmodel generation alongwith the linear program (C).
Witness models are systematically generated using a graph solver [SNV18][j1] as solutions of such
tasks along refinements %init < " of the initial partial model. The cost associated with the witness
model "∗, which is a solution of the IPET linear program (C) extended with domain-specific
flow facts (E), is a safe and tight WCET estimate.

6.3.3 Approximating execution time with graph predicates

To derive precise flow facts for WCET analysis of a graph query program with concrete input
model" and characterize its data-dependent execution time, we construct a basic block predicate
kbb for each basic block bb ∈ BB of the query program. Free variables of kbb correspond to
program variables (bound by for loops). Due to the structure of the code generated from the
query plans (Section 6.1.3.3), each execution of bb corresponds to a match / ∈ Matches(",kbb)
ofkbb in" .

For loop headers, we construct an additional k ′
bbℓ,ℎ

where the matches of k ′
bbℓ,ℎ

represent
executions of the loop ℓ where the loop condition holds, while the matches ofkbbℓ,ℎ correspond
to the executions where the loop exits.

Algorithm 2 takes a data-driven monitor program generated from a graph query and con-
structs the basic block predicates. In addition to the set of basic blocks BB, the algorithm requires
traceability information lineTrace (that connects basic blocks to source code lines) and planTrace
(that connects source code lines to extend and check constraints in the query plan). The
lineTrace is extracted from the IPET analysis tool (based on debug information in the compiled
executable), while planTrace is the output of the query code generator.

110



6. Worst-Case Execution Time calculation for query-based monitors

As state-of-the-art WCET analysis tools [Bal+10] do not recommend analyzing programs
compiled with advanced optimizations, we did not assess programs that use optimization. There-
fore, source line, as well as extend and check constraint information in lineTrace remains valid
after compilation. However, the following algorithms can be extended to support compiler
optimizations, as long as a compiled basic block still corresponds to a single constraint and the
control flow remains structured (comprised on loops and conditionals).

In line 4,kbb is initialized to true, which has a single (trivial) match in any model to reflect
that blocks not implementing any query plan constraints will be executed exactly once. Then, in
line 5, we traverse lineTrace to extract the source lines corresponding to bb. The loop in lines 6–7
processes all if and for statements enclosing the source lines for bb. As a result,kbb becomes the
conjunction of atomic predicates, which correspond to the query plan constraints implemented
by the processed statements. Lastly, in lines 10–13, if bb is a loop header, we also add the atomic
predicate corresponding to the loop itself to obtaink ′

bb
, which characterizes executions when

the loop condition holds.
Algorithm 3 implements translation of for and if statements to atomic logical predicates.

The algorithm traverses planTrace to process the corresponding query plan constraint. For
extend constraints (usually associated with for loops), the existential quantifier ∃ is removed
so that the constraint introduces a new free variable to kbb. Check constraints (associated
with if statements) are returned as-is, because all their variables are already introduced by
some enclosing extend operation. Thus, for a basic block bb enclosed by< statements with
extend constraints will havekbb with free variables E1, . . . , E< . If bb is a loop header,k ′

bb
has an

additional E<+1 free variable.

Example 6.12 Listing 6.4 shows the generated source code of the closeTrains graph query,
while Figure 6.4 show the corresponding CFG (without any loop unrolling). The lineTrace
information is depicted as line numbers next to the CFG nodes, and comments above the
control structures contain planTrace. The basic block bb9 corresponds to the loop header in
line 17. Collecting the query plan constraints from the control structures enclosing line 17
with Algorithm 2, we find that

kbb9 = Train(C) ∧ location(C, B) ∧ connectedTo(B,<)
k ′
bb9

= Train(C) ∧ location(C, B) ∧ connectedTo(B,<) ∧ connectedTo(<, 4) .

In the concrete model"∗ in Figure 6.7a, executions of bb9 are represented by the 4 matches
Matches(",kbb9) = {{C ↦→ tr0, B ↦→ tu0,< ↦→ s1}, {C ↦→ tr0, B ↦→ tu0,< ↦→ s2}, {C ↦→ tr1, B ↦→
s3,< ↦→ s1}, {C ↦→ tr0, B ↦→ s3,< ↦→ s2}} of kbb9 , as well as the 8 matches of k ′

bb9
obtained

by extending eachkbb9 match by the two possible segments connectedTo the value of< as
the value of the variable 4 . Each match describes the values of the program variables when
entering bb9.

Algorithm 4 constructs precise domain-specific flow facts for a concrete model" . In addition
to the basic blocks BB and the traceability information, the algorithm reads the control flow
graph CFG = 〈+ , �, B, C,F, tr〉 and the function f : � → X associating CFG edges with linear
equation variables. Line 2 initializes the empty system of linear equations Sflow and constructs
the basic block predicates Ψ. Leveraging the CFG traceability function tr : � → BB, expressions∑

4=〈=1,=2 〉∈�,tr (=1 )=bb f(4) are built, which represent the number of times a basic block bb is
executed (Section 6.2.1). For a loop header, this number is equal to the number ofkbb andk ′

bb
matches in" (line 4), while for other blocks, only matches ofkbb are counted (line 5).

The resulting set of linear equations Sflow serve as flow facts in IPET analysis. More precisely,
by incorporatingSflow into the analysis, we may obtain a safe and tight estimate for the execution
time of a graph query program on the concrete model" .

111



6. Worst-Case Execution Time calculation for query-based monitors

Algorithm 5: Witness generation task construction for a partial model %
1 Function WitnessGen(BB, lineTrace, planTrace,CFG = 〈+ , �, B, C, F, tr 〉, 〈Σ, Γ, U 〉, % = 〈O% , I% , S% 〉, T = 〈3, E〉) is
2 Construct the IPET max

∑
x8 ∈XIPET 28 · x8 subject to SIPET for CFG with f : � → XIPET (w.l.o.g. XIPET ∩ X% = ∅);

3 Σ′ = Σ, Γ′ = Γ, U ′ = U , 3 ′ = 3 , I% ′ = I% , S% ′ = S% , Ψ = DerivePredicates(BB, lineTrace, planTrace) ;
4 % ′ = 〈O% , I% ′ , S% ′ 〉 over the theory 〈Σ′, Γ′, U ′ 〉, T′ = 〈3 ′, E〉;
5 foreach x ∈ XIPET do Γ′X = Γ′X ∪ {Xx }, U ′ = U ′ ∪ {Xx ↦→ 0};
6 foreach

[∑
x8 ∈XIPET 08 · x8 ≤ 1

]
∈ SIPET do S% ′ = S% ′ ∪

{∑
x8 ∈XIPET 08 · X̂x8 ≤ 1

}
;

7 Γ′X = Γ′X ∪ {X∗}, U ′ = U ′ ∪ {X∗ ↦→ 0}, S% ′ = S% ′ ∪
{
X̂
∗
=
∑

x8 ∈XIPET 28 · X̂x8
}
;

8 foreach bb ∈ BB do
9 if bb is a loop header then
10 Σ′F = Σ′F ∪ {Ybb, Y′bb }, Γ

′
F = Γ′F ∪ {Ybb, Y′bb }, U

′ = U ′ ∪ {Ybb ↦→ |Freekbb |, Y′bb ↦→ |Freek ′
bb
| },

3 ′ = 3 ′ ∪ {Ybb ↦→ kbb, Y′bb ↦→ k ′
bb
}, I% ′ (Ybb ) ≡ I% ′ (Y′

bb
) ≡ ½;

11 S% ′ = S% ′ ∪
{∑

4=〈=1,=2〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗) ]%
′ + #[Y′

bb
(∗, . . . , ∗) ]% ′ }

;
12 else
13 Σ′F = Σ′F ∪ {Ybb }, Γ′F = Γ′F ∪ {Ybb }, U ′ = U ′ ∪ {Ybb ↦→ |Freekbb | }, 3 ′ = 3 ′ ∪ {Ybb ↦→ kbb };
14 I% ′ (Ybb ) ≡ ½, S% ′ = S% ′ ∪

{∑
4=〈=1,=2〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗) ]%

′ }
;

15 return maxX∗ subject to 〈% ′, T′ 〉;

Proposition 6.5 Let g be the execution time of the query q on the concrete model" ,

CL = max
∑
x8 ∈X

28 · x8 subject to SIPET, DS" = max
∑
x8 ∈X

28 · x8 subject to SIPET ∪ Sflow,

where CL is the classical IPET estimate obtained from q, and DS" is the domain-specific
estimate with flow facts derived from" using Algorithm 4. Then g ≤ DS" ≤ CL.

6.3.4 Witness Generation of Worst-Case Execution Time

To estimate the WCET of some query program q over a set of models, we specify the model
scope of interest as the solutions(%,T) of a model generation task. We construct an extended
model generation problem maxX∗ subject to 〈% ′,T ′〉 in Algorithm 5, where % ′ extends % with
the results of IPET analysis and T ′ incorporates the basic block predicates obtained from q. We
use the notation Freek to denote the set of free variables of the logic formulak .

In line 2, the algorithm builds an IPET integer program max
∑

x8 ∈XIPET 28 · x8 subject to SIPET

based on the provided CFG. Then, in line 3, we invoke Algorithm 2 to obtain the basic block
predicates Ψ used to derive precise flow facts for graph models.

We create a new signature 〈Σ′, Γ′, U ′〉 that extends the signature 〈Σ, Γ, U〉 by new numerically
tracked symbols. In line 5, we add a new auxiliary variable symbol Xx for each linear inequality
variable x ∈ XIPET of the IPET problem SIPET. The auxiliary variable symbol X∗ added in line 7
will hold the value of the cost function

∑
x8 ∈XIPET 28 · x8 of the IPET problem. Moreover, we

add predicate symbols Ybb and Y′
bb for basic block and loop header predicates kbb and k ′

bb
in

lines 13 and 10, respectively. The extended theory T = 〈3 ′, E〉 assigns these predicates to the
corresponding predicate symbols.

In the extended partial model % ′, we initialize the interpretations of basic block and predicate
symbols to have the truth value ½ everywhere. This allows us to discover the values of these
predicates in the future by refinement without reducing model scope initially by new constraints.

The extended system of linear inequalities S% ′ incorporates the IPET linearinequalities SIPET

after replacing each linear inequality variable x8 with the corresponding auxiliary symbol X̂x8
in line 6. Line 7 sets the value of X∗ symbol to be equal to the IPET objective function. The
precise flow facts from Algorithm 4 are added to S% ′ in lines 11 and 14. Instead of referring to
the number of matches"#kbb and"#k ′

bb
in a concrete model directly, we replace then with the

112



6. Worst-Case Execution Time calculation for query-based monitors

count aggregations #[Ybb (∗, . . . , ∗)]%
′
and #[Y′

bb (∗, . . . , ∗)]
% ′
, respectively, to refer to the potential

number of matches in the partial model % ′ (and thus in any concrete refinement % ′ < ").
The resulting extended model generation task provides a safe and tight estimate for the

query program WCET with theory T .

Proposition 6.6 (Safety and tightness) Let g (") be the execution time of a query pro-
gram q on a concrete model" , % be regular scoped partial model, T be a theory, and

CL = max
∑
x8 ∈X

28 · x8 subject to SIPET, DS% = maxX∗ subject to 〈% ′,T ′〉,

where CL is the classical IPET estimated obtained from q, and DS% is the domain-specific
estimate based on the extended graph generation problem form Algorithm 5. Then g (") ≤
DS% ≤ CL for all" ∈ solutions(%,T).

Optimal solutions are witness models, which maximize the domain-specific of WCET for
concrete refinements of the input partial model % compatible with the theory T . As the witness
model "∗ is in the model scope, it is a feasible (as opposed to spurious) input of the query
program.

Definition 6.7 (Projection of an extended partial model) Let 〈Σ, Γ, U〉 be a signature,
〈Σ′, Γ′, U ′〉 be the corresponding extended signature output by Algorithm 5, and % ′ =

〈O% ′,I% ′,S% ′〉 be a regular scoped partial model over 〈Σ′, Γ′, U ′〉. Then b% ′c =

〈O% ′,Ib% ′ c,Sb% ′ c〉 is the projection of the extended partial model % ′ back to 〈Σ, Γ, U〉, which is
formed by omitting the interpretations of any symbols Σ′ \ Σ from I% ′ and eliminating any
symbols in Γ′ \ Γ from S% ′ via Fourier–Motzkin elimination [Sch98, pp. 155-157].

Note that in practice, linear inequalities mentioning numerically tracked symbols in Γ′ \ Γ
in S% ′ do not contain any other symbols from Γ, because no such inequalities are added by
Algorithm 5 or in any other step of the model generation procedure. Therefore, these inequalities
can be simply discarded instead of having to execute Fourier–Motzkin elimintation.

Proposition 6.8 (Witness model) Let DS" (") be the domain-specific WCET estimate of
a query program q obtained by Algorithm 4 for a concrete model " , DS% be the domain-
specificWCET estimate of q for a regular scoped partial model % and theory T by Algorithm 5,
and "∗ be the witness model for the WCET of q, i.e., the optimal solution of DS% . Then
b"∗c ∈ solutions(%,T) and DS" (") ≤ DS" (b"∗c) = DS% for all" ∈ solutions(%,T).

Moreover, refinements of the partial model % < & may be used to tighten the WCET estimate
by reducing the model scope under discussion.

Proposition 6.9 (Tightening by refinement) Let DS% (%,T) denote the domain-specific
WCET estimate of a query program q for a regular scoped partial model % and theory
T obtained by Algorithm 5 and % < & for some regular scoped partial model & . Then
DS% (&,T) ≤ DS% (%,T). In particular, if % = %init is the initial partial model for a metamodel
〈Σ, Γ, U〉 from Section 4.2.2, then we may see that the WCET estimate for any partial model
conforming to the metamodel is at least as tight as the DSΣ estimate for the metamodel.

Example 6.13 Figure 6.9 shows a simplified execution of the graph generator. Suppose
that Algorithm 5 has output an extended graph generation task maxX∗ subject to 〈%0,T ′〉,
where the objective function is defined as

[
X̂
∗
= 250 · X̂1

]
∈ S%0 and we have a flow fact[

X̂1 = #[Ybb (∗, ∗)]%0
]
∈ S% ′ . Moreover, suppose that the extended theory T ′ = 〈3 ′, E〉 has

3 (Ybb) = iCT from Figure 6.3c. This amounts to a witness generation task where there is a
single baseic block bb that takes 250 systicks and is entered once for every match of the iCT

113



6. Worst-Case Execution Time calculation for query-based monitors

�Train(trnew) ≤ 2

s1
Segment=1

s2
Segment=1

s3
Segment=1

trnew
Train=1

~

~

connectedTo connectedTo

~

connectedTo connectedTo
~

occupiedBy

occupiedBy

occupiedBy

location

location

location

�Train(trnew) ≤ 1, X̂
∗ ≤ 500

s1
Segment=1

s2
Segment=1

s3
Segment=1

trnew
Train=1

tr1
Train=1

%2

<

~

~

connectedTo connectedTo

~

connectedTo connectedTo
~

occupiedBy

occupiedBy

location

location

~

occupiedBy

location

�Train(trnew) ≤ 1, X̂
∗
= 500

s1
Segment=1

s2
Segment=1

s3
Segment=1

tr2
Train=1

tr1
Train=1

%3

<
~

~

connectedTo connectedTo

~

connectedTo connectedTo ~

occupiedBy

location

occupiedBy

~

location

�Train(trnew) ≤ 1, X̂
∗
= 0

s1
Segment=1

s2
Segment=1

s3
Segment=1

tr1
Train=1

trnew
Train=1

%1%0

X×

<
~

~

connectedTo connectedTo

~

connectedTo connectedTo
~

oBy.

loc.
~

occupiedBy

occupiedBy

location

location

Figure 6.9: Execution of the example graph generation task maxX∗ subject to 〈% ′,T ′〉.

predicate. The inequality #[Train(∗)]%0 = �Train(trnew) ≤ 2 prescribes a type scope of at most
2 Train instances.
Two non-isomorphic partial models %1, %2 can be obtained from %0 = %

′. In %1, the generator
placed a train tr1 on the middle segment s2 of the track. Therefore, the multi-object trnew
represents at most one additional train (�Train(trnew) ≤ 1). The iCT predicate cannot match
(#[Ybb (∗, ∗)]%1 = 0), since it is impossible to place a new train on both s1 and s3. Any possible
concrete refinement %1 < " of %1 has an objective value -̂ ∗ = 250 · -̂1 = 250 · #[Ybb (∗, ∗)]" =

250 · 0 = 0.
If we place a new train on s1, we obtain %2. Placing a train on s3 results in an isomorphic
model, so it is sufficient to only consider %2 instead. Here, there can be at most 2 matches
of iCT (#[Ybb (∗, ∗)]%2 = Ŷbb (tr1, trnew) + Ŷbb (trnew, tr1) ≤ 2). Indeed, if we place an additional
train on s3, we obtain the concrete model "∗ = %3 with 2 matches of iCT (#[Ybb (∗, ∗)]%3 =
Ŷbb (tr1, tr2) + Ŷbb (trnew, tr1) ≤ 2). The corresponding objective value is X̂

∗
= 250 · 2 = 500. No

larger objective value is possible by any concrete refinement of %1, since S%1 � X̂
∗
= 0. Hence

we may discard %1 along with its potential refinements, and output"∗ as the witness model
obtained as the optimal solution of model generation task.
Assuming that the (simplified) objective X∗ is the domain-specific WCET estimate of the query
program, 500 is our WCET estimate, which is the execution time bound that is expected to be
reached (according to the low-level IPET analysis) when executing the query program over
the witness model"∗ as input.

6.4 Evaluation

We conducted experiments to address the following research questions related to the WCET of
query programs. For each research question, we investigate the scenario (a) DSΣ, where only
the metamodel and the relevant well-formedness and scope constraints are known; and (b) DS% ,
when an initial partial model (describing a track layout but not its runtime state) is also provided.

RQ1 How difficult is it to find witness models?

RQ2 How safe and tight are WCET estimates w.r.t. existing approaches and real execution
times?

RQ3 How does query program complexity impact the overestimation of computed WCET
bounds?

RQ1 aims at determining whether our model generation based approach can find the witness
model in practical time and whether it constitutes an improvement over random search. The rest
of the experiments study the quality of WCET bounds, which is a key factor in the applicability
of our approach. In particular, RQ2 attempts to compare our computed WCET estimates with

114



6. Worst-Case Execution Time calculation for query-based monitors

the state of the art in challenging settings with partial runtime information, while RQ3 presents
increasingly challenging query programs to our approach.

6.4.1 Evaluation overview and setup

Queries

To address these research questions, we use graph queries from the domain of the MoDeS3
CPS demonstrator [Vör+18b]. This demonstrator uses high-level runtime monitoring rules
captured as graph queries, and showcases synthesized monitoring programs executing these
queries over the runtime graph model of the underlying running system. Our experiments focus
only on query evaluation, and updates to the runtime model are out of scope for the current
paper. Therefore, we ran the query programs on various snapshots of runtime graph models.
We evaluated the following queries adopted from [Búr+18]:

• Close trains (ct): This is the query introduced in the running example of Section 6.1.3.

• End of siding (eos): This query finds trains that are dangerously close (one segment
distance) to an end of the track.

• Misaligned turnout (mt): Pairs of trains and turnouts are the objectives of this query,
where the train would derail if it reached the turnout because it is switched in a different
direction.

• Train locations (tl): A simple query to find pairs of trains and segments that describe
the locations of each train.

The calculation of query search plans is out of scope of the current paper, but they were
created and optimized based on the typical model statistics of runtime model snapshots in the
MoDeS3 system. For example, the search plan presented in Table 6.1 is the one used by the
program executing the query Close trains.

WCET algorithms and WCET tools

To compare the results produced by our WCET estimation approaches DSΣ and DS% with
estimates produced by other tools, we used the commercial aiT [FH04] (version 20.10i) and
the open-source OTAWA [Bal+10] (version V1.2.0) tools. For aiT, we used a high precision
configuration with pipeline-level analysis and full (up to the determined loop bound) loop
unrolling, as well as a low precision configuration with only basic block-level analysis and no
unrolling. To incorporate the results of low-level analysis into DSΣ and DS% , we extracted
the IPET linear equations from the low-level configuration of aiT manually, as no facility was
available for automatic export or accessing the high precision system of linear equations directly.
We also extracted the IPET linear equations from OTAWA, which have BB execution context
information (paths of length two).

Graph models

In the following, we describe how we obtained a variety of models to assess the impact of models
with different characteristics on query evaluation times.

Using the metamodel in the MoDeS3 case study, we generated witness models "∗
Σ for each

monitoring query and for both low-level analyses (aiT, OTAWA) such that the query is estimated
to have the longest possible execution time according the low-level analysis. For all of these
models, we used the same model scope inspired by the railway domain: up to 20% of the objects

115



6. Worst-Case Execution Time calculation for query-based monitors

can be Trains and up to 20% of the objects can be Turnouts. The rest of the objects are Segments;
we capped the maximum number of objects at 25. The resulting models are syntactically valid
and they can represent a realistic railway system thanks to the domain-specific well-formedness
constraints.

To obtain a realistic model "real, we manually captured a detailed runtime model snapshot
of MoDeS3 that is similar to the one presented in Figure 6.2b with a total of 25 objects. Then,
we removed all Train objects from"real and unset all turnout directions, and used the resulting
(partial) track layout % to find specific placements of trains and switching of turnouts such that
the run times of the queries are maximized on the generated"∗

%
witness models.

To assess the execution times of the query programs on randommodels, we generated models
conforming to the MoDeS3 metamodel with up to a total of 25 objects. Due to the large space of
possible graph models, representative sampling from the model space is an open question [JSS13;
Sem+20c]. Nevertheless, we generated 250 models with the EMF random model generator2

(Rand) with up to 5 Turnouts and up to 5 Trains, but none of them represents a railway setting
that can occur because they all violated well-formedness constraints due to the completely
random construction.

We also generated 250 models with the VIATRA Generator (VG) without an optimization
objective, which satisfy all well-formedness and scope constraints used for generating witness
models. However, the state exploration heuristics of the generator may lead to a biased sample.

Hardware setup

We use the Infineon Relax Lite Kit-V1 Board3 to execute the query programs. This board has
an XMC4500 F100-K1024 microcontroller and it is driven by a 120MHz system clock. This
microcontroller is considered to be a mature industrial microcontroller and has an ARM Cortex-
M4 core. For the present evaluation, the instruction cache on the device is not used as our
primary focus is on the impact of domain-specific information about high-level program flow
rather than microarchitectural effects.

The bare-metal query programs are compiled with GCC compiler for ARM version 7.2.1 with
-O0 and -g3 flags in debug mode. These programs run on the microcontroller while no other
tasks (e.g., interrupts) are running. We rely on the cycle counter feature of the Data Watchpoint
and Trace Unit in the device to extract the execution times of each query using a debugger.
The embedded code used for the experiments as well as compiler and other configurations are
available online4.

6.4.2 Evaluation results

Research Question 1 (a)

We investigate if a witness model for a query can be obtained from simpler graph generation
approaches, and we do this by measuring the execution times of queries over various models.
Our results are presented in Figure 6.10a. The run times over models by VG is captured by the
green boxes, while the orange ones show the run times over models by Rand. Each query was
evaluated on the same two sets of models. Additionally, the respective query execution time
over each witness model"∗

Σ is added to these figures for comparison, where"∗
Σ is the witness

model generated using the objective function built from the low-level analysis results of aiT.
Moreover, the run time over the hand-crafted"real model is also presented.

2https://github.com/atlanmod/mondo-atlzoo-benchmark
3http://www.infineon.com/xmc-dev
4https://imbur.github.io/cps-query/

116

https://github.com/atlanmod/mondo-atlzoo-benchmark
http://www.infineon.com/xmc-dev
https://imbur.github.io/cps-query/


6. Worst-Case Execution Time calculation for query-based monitors

●●●●●●●●●●●●1000

2000

C
lo

se
tr

ai
ns

E
nd

 o
f

si
di

ng

M
is

al
ig

ne
d

tu
rn

ou
t

Tr
ai

n
lo

ca
tio

ns
Query

E
xe

cu
tio

n 
T

im
es

 (
sy

st
ic

ks
)

(a) Measured query times over consistent mod-
els, random models, witness models, and real-
istic models

Consistent models (VG)

Random models (Rand)

Witness model ("∗
Σ)

Realistic model ("real)

Query States visited % of total

Close trains 992 681 19 %
End of siding 878 243 17 %
Misaligned turnout 875 < 1 %

Train locations 144 < 1 %

Total 5 273 100 100 %

(b) Results of state space exploration during
witness generation from partial model using
IPET linear equations adapted from aiT low-
precision

Figure 6.10: Query execution times on fully random models and realistic models

Findings For each consistent model considered, queries exhibited the longest observed execu-
tion times on their respective witness models. In fact, for two queries, eos and mt, the execution
time on the witness is longer than the maximum measured execution time over any other
consistent model, which highlights the importance of our witness model generation technique.

Maximum run times over models generated by Rand can be both higher and lower than
on witness models. For example, query ct takes 2% shorter over a random model than over its
witness model, but the random model does not represent a realistic railway. On the contrary,
query eos takes at least 8% longer to complete on the witness model than on any model generated
by Rand. Therefore, computing safe and tight WCET estimates of queries which execute over well-
formed models (1) is infeasible by collecting run times over random models, and (2) necessitates
finding witness models by employing sophisticated model generation approaches.

Research Question 1 (b)

All possible refinements of % constitute a potentially large model space where finding"∗
%
can

be challenging and requires the graph solver to apply suitable abstractions for optimization. In
our case, there are 35 ·∑5

8=0

(20
8

)
= 5 273 100 models (Total row in Figure 6.10b) in the space of

well-formed concrete refinements of the initial partial model % containing the (selected) track
layout, because each of the 5 turnouts can be in three different states, and there can be up to 5
trains which must be located on different segments. Thus, explicit enumeration of all models is
possible for such a track layout, although it is computationally expensive.

As described in Section 6.4.1, we used the graph generator to add trains to a model with an
empty track layout such that the expected query run times are maximized. Figure 6.10b presents
the number of states explored by the graph generator compared to the space of all refinements.

Findings The number of states visited by the generator increases with the complexity of
the query. For the most complex query ct, the generator was able to find the model with the
highest estimated WCET after visiting 19% of the model space. For the least complex tl query,
it visited only 144 states, which allowed the witness generation to finish almost instantly. In
conclusion, the generator explores a fraction of the state space, making it more favorable than
explicit enumeration.

117



6. Worst-Case Execution Time calculation for query-based monitors

Table 6.3: Query code complexity, measured execution time, and WCET estimates in systicks

DSΣ aiT

Query CC

Exec.
time

over"∗
Σ

w/aiT w/OTAWA low precision high precision OTAWA

Close trains 7 2652 3133 3430 3563 3038 4210
End of siding 6 1395 1757 1820 1757 1477 1860
Misaligned t. 5 939 1097 1370 1097 987 1370
Train locations 3 489 592 695 592 507 695

Table 6.4: Query code complexity, measured execution time, and WCET estimates with a partial
model

DS% aiT with partial memory image

Query CC

Exec.
time

over"∗
%

w/aiT w/OTAWA low precision high precision

Close trains 7 2544 3079 3338 3706 3091
End of siding 6 1275 1554 1636 1813 1523
Misaligned t. 5 969 1097 1370 1065 950
Train locations 3 504 592 695 586 506

Research Question 2

Our goal is to compare the computed WCETs obtained from different tools with our own
techniques. For this RQ, we restrict our investigation to the scenario DSΣ where only the
metamodel and the well-formedness and scope constraints are known (i.e., case (a)), because
only our technique but not the baseline tools (aiT, OTAWA) support processing a partial model as
in DS% (i.e., case (b)). Table 6.3 shows the WCET estimates for the 4 queries along with measured
execution time (expressed in systicks) over the respective witness model.

Findings In the case of ct, our WCET estimation approach produces estimates 14% tighter
than the one by aiT (low precision analysis). It is also important to point out that even without
context-sensitive BB timings, our low precision approach provides only 3% higher estimates than
aiT’s high precision mode, which indicates that it is able to automatically identify infeasible paths
in the program based on high-level domain-specific information. For OTAWA, improvements of
the WCET estimate achieved in two cases: ct has a 23%, while eos has a 2% tighter estimate. For
the rest of the queries, the analysis yields the same results as aiT low precision mode or OTAWA.

Therefore, WCET estimates by DSΣ were at least as tight as those obtained by low-level IPET
analysis. Thus, domain-specific analysis can improve WCET estimates while simultaneously
synthesizing witness models to study query program behavior. Conceptually, it would be possible
to formulate more precise DSΣ estimates by incorporating low-level analysis results from the
high precision mode of aiT as shown in Section 6.3.4, but such equations cannot be obtained
from aiT.

Research Question 3 (a)

With this RQ, we look at the impact of query complexity on the computed WCET bounds, so
that we can give recommendations on where our approach offers the greatest benefits. The
execution times of queries over"∗

Σ in Table 6.3 provide a lower bound to the actual WCET (i.e.,
the longest possible execution time of the program over inputs which represent well-formed
models in the model scope), while the CC columns shows query cyclomatic complexity. Since

118



6. Worst-Case Execution Time calculation for query-based monitors

the actual WCET of the program is unknown (but it must lay between the measured execution
time and the WCET estimates produced by the analyses), we use the measured execution time
over witness models as the baseline when discussing overestimation in WCET estimates.

Findings The biggest visible advantage of �(Σ is in the case of the most complex query ct: the
overestimation is 18% with BB timings from aiT, while the aiT low precision analysis computes
a 34% higher value. In other cases, it produces the same result as aiT, with overestimates being
between 16% (query mt) and 26% (query eos). We come to the same conclusion using BB timings
from OTAWA, although these timings are slightly more conservative. The high precision analysis
available in aiT is able to leverage the microarchitectural properties and thus provide the most
precise estimates with the overestimation being 14% (observed for query ct). The overestimation
increases with CC of the query code only in the case of high precision aiT analysis.

In general, DSΣ computes a safe WCET bound and additionally provides a witness model.
Moreover, it is able to discover additional infeasible paths the WCET estimate for the most
complex query, thus provide a tighter estimate.

Research Question 3 (b)

The goal of this RQ is to conclude if providing an initial graph model with elements of the graph
model known upfront can lower the WCET, thus provide an execution time estimate for "∗

%

lower than the one computed for "∗
Σ. The execution times of queries over "∗

%
are presented

in Table 6.4 similarly to Table 6.3. The estimates computed by DS% are valid and safe for any
possible in-memory representation of the refinements of % (concrete models containing the
designated track layout).

Additionally, Table 6.4 shows estimates from aiT computed by value analysis (VAL) over the
initial track layout model provided to aiT as a partial memory image, where the unknown parts of
% (locations of trains and the directions of turnouts) are left uninitialized. While WCET estimates
based on this input are not safe, as they do not consider all possible in-memory representations
of the refinements of % , we still added these numbers to Table 6.4, because they correspond to
the most likely usage of existing WCET analysis tools with partial input.

Findings Comparing DSΣ and DS% , we discover that providing an initial model tightens WCET
estimates for the two more complex queries, but does not change the estimate for the two less
complex ones. This is due to the nature of the initial model and query search plans. There is
no arrangement of trains on the initial track layout such that the WCET estimate from DSΣ for
ct and eos run times is reached, whereas the evaluation of mt and tl depends less on the track
layout.

Additional observations For mt and tl, observed query run times on the witness models
"∗

%
were higher than on "∗

Σ, which can be attributed to the placement of data in memory as
mentioned in Section 6.1.2.2. Nevertheless, they were still within the WCET estimates from both
DSΣ and DS% .

Unexpectedly, the partially specified data yields higher WCET estimates by both analysis
modes of aiT for the two more complex queries, ct and eos, when compared with the estimates
in Table 6.3. Thus, for these queries, it is not possible to tighten WCET estimates for partial input
data even with the caveat that all objects in the partial input are statically allocated. We have
reported our observation to the developers of aiT at AbsInt GmbH, and they have confirmed
that the discrepancy in the estimates is due to the differences in the placement of data in the two
binaries. Note that these analyses solve a less general challenge compared to DS% since they
only consider one possible physical layout of the partial data in memory (and not all possible
in-memory layouts), thus they are highlighted in gray in Table 6.4.

119



6. Worst-Case Execution Time calculation for query-based monitors

On the other hand, aiT high-precision mode produces a lower estimate based on the provided
initial model than what is measured over"∗

%
(highlighted in red in Table 6.4). The underlying

reason for this is that the tool relies on the exact placement of data in memory rather than the
abstract graph model the data encodes. Eventually, in"∗

%
, the model objects were stored in the

memory in different order which resulted in a higher runtime (see note about data placement in
Section 6.1.2.2).

In general, providing partial input data allows for tightening WCET estimated for complex
queries even in cases where value analysis with partial input data is not safe. For less complex
queries, supplying a partial memory image can tighten the results of value analysis considerably,
but requires committing to a specific in-memory representation of the partial data statically.

6.4.3 Threats to validity

Internal validity The current evaluation was performed on a device where the executing
binary only included the query-based monitor, so we can assume that the measurements pre-
sented here precisely show the execution times of queries. Since the exact WCET of the program
is unknown, we used the longest observed execution time to assess the overestimation of the
computed WCETs. In reality, this overestimation might be lower than what is reported here,
which would make our WCET estimates tighter than presented.

External validity We carried out the evaluation using one specific hardware and compiler,
thus the presented results may not generalize to other platforms. Furthermore, the presented
approach is applicable to any query-based monitor generated with Algorithm 1. However,
evaluation of the WCET estimation techniques using additional case-studies with query-based
runtime monitors from different domains could further improve the confidence in the evaluation
results.

6.5 Related work

Numerous static and probabilistic WCET analysis methods have been discussed in [Wil+08;
Koz16]. Abella et al. [Abe+15] compares the most common WCET estimation approaches for
programs in real-time systems and highlights their strengths and limitations. Based on the
categorization of approaches of this latter work, our approach is a high-level, static deterministic
timing analysis (SDTA) which provides safe execution bounds for embedded programs executing
complex graph queries. Furthermore, measurement-based WCET estimations [Wen+05; LB16]
and probabilistic methods [HHM09; Cuc+12] are out of scope for our work. Nevertheless, we
focus on semantic-aware WCET estimation [Mai+17], which aims at providing safe and tight
estimates for programs where there are some semantic limitations on the input data, which
cannot be automatically explored and exploited by current analysis techniques, and often times
manual annotations of the code are necessary. In our case, control flow is often constrained by
complex rules which are based on various properties of graph models. We provide an overview
of existing work related to graph-based programs, runtime monitoring and program flow analysis.

Graph query programs: Existing platforms Graph models and queries have been often
used in design models and tools of real-time systems [Jür03; Gie+03; Bur+04]. Furthermore,
graph-based techniques are used in various IoT and edge computing applications [Xie+21; Li+19].
However, due to the soft real-time requirements of such applications, the WCET analysis aspect
is often neglected. The focus of our work is to provide safe and tight WCET of such programs,
and thus extend their application area.

120



6. Worst-Case Execution Time calculation for query-based monitors

Graph query programs: WCET estimation One of the few related works that investigates
real-time properties of graph-based techniques is [Bur+05]. Motivated by the expressiveness
of story diagrams [Fis+98], the authors evaluate the applicability of this high-level modeling
formalism to recognize hazardous situations in real-time systems. Their work investigates
worst-case execution times of imperative programs generated from such story diagrams by
executing measurements of manually created worst-case inputs. In contrast, our work aims to
automatically synthesize worst-case well-formed input models as part of static analysis.

Runtime monitoring: Hard real-time embedded systems One of the earlier works in
the field is The Temporal Rover [Dru00]. This framework can generate monitoring code from
temporal logic formulae with low overhead, but the verification of properties is done in a large
part on a powerful remote host, while our method does not rely on any external component. The
concept of predictable monitoring was introduced in [ZDG09] where static scheduling techniques
were used to show that a monitor fits its allocated time frame, but the analysis of monitoring
tasks is out of its scope which is the topic of this current paper. Finally, synchronous component
execution and observable program states are the main assumptions made in [Pik+10] to support
sampling-based monitoring of input streams in real-time systems, whereas our work targets
monitors executing complex queries over a graph model capturing contextual information on a
high-level of abstraction.

Runtime monitoring: Real-time database queries In real-time databases [OS95], access to
data has strict time constraints. The work in [HOT89] presents a data sampling-based statistical
method to evaluate aggregate queries in a database. There is a trade-off between time available
for query execution and the precision of the estimate. Such estimations would not be acceptable
in a monitoring setting where precise query results are expected. The real-time object-oriented
database RODAIN [TR96], which targets telecommunication applications, does not support hard
real-time transaction (i.e., query) types, because it is considered too costly for the target domain.
However, our objective is exactly to provide such guarantees over graph models to support hard
real-time applications.

Program flow analysis Timing analyzers for program flow analysis often employ some
version of the implicit path enumeration technique (IPET) [LM97]. The general idea behind this
method is to use the control flow graph (CFG) of the program to create an integer linear program
(ILP) where each variable encodes the number of executions of a corresponding basic blocks,
and the objective function is to maximize their total execution time. Besides the IPET method,
several tree-based methods exist which use a tree representation of the program (obtained from
the source code or compiled binary) and apply some traversal to find the longest path in a
program [Lim+95; CB02; BFL17]. In any case, the effectiveness of these methods rely on precise
program flow facts (e.g., loop bounds, infeasible paths) to be able to determine a safe and tight
WCET estimate. Although there are several advanced (semi-)automated techniques available
today to derive additional constraints on the program flow and thus improve the precision of the
WCET estimate [Gus+06; Erm+07; CJ11; KKZ13; Lis14], there is still a significant manual effort
needed to specify flow facts [Abe+15]. Most closely related to our current work is [KKZ13],
which uses abstraction refinement to reduce WCET estimates by squeezing. However, this
approach cannot exclude longest execution paths from the program which are infeasible due to
complex domain-specific constraints on the inputs.

6.6 Conclusions

In this chapter, we presented a method to provide safe and tight WCET bounds for runtime
monitoring programs derived from graph queries to enable their use in real-time systems. We

121



6. Worst-Case Execution Time calculation for query-based monitors

provided a static WCET estimate by incorporating low-level analysis results from traditional
IPET-based tools and high-level domain-specific constraints into the objective function of an
advanced graph solver. In addition to a tight WCET estimate, the result also entails a witness
graph model where the query-based monitoring program execution time is expected to be the
longest.

We carried out extensive evaluation of our approach on an industry-grade hardware platform
using a variety of graph models as inputs for query programs, and assessed the tightness of
computed WCET by comparing it to the results produced by two different tools. We constructed
witness models for highest estimated execution times of queries as well as random graph models
as inputs for graph query programs as an attempt to showcase high execution times. While
we have no formal guarantee that worst-case timing behavior is exhibited on witness models
as inputs, in all our experiments, the longest execution times were always measured on such
witness models.

In the short run, the proposed approach can be improved by passing the results of high-
precision IPET analysis (including CFG unrolling and pipeline analysis) to the graph solver,
while the evaluation of the approach should be done on a different hardware platforms as well.
As a part of a long-term future research agenda, our approach could be extended to provide
witness models with specific data placement in memory where the execution time equals to the
WCET of the program.

122



Chapter7
Summary of contributions

As per university regulations, contributions in this section are formally proposed using the
first-person singular (“I”). The highlighted contributions, published in the works cited therein,
are the work of the author of this thesis alone. The rest of the thesis follows the conventions of
the field by using the first-person plural (“we”).

7.1 Partial modeling for quantitative extra-functional analysis

In order to tackle Challenges 3 and 5, the first group of contributions in this thesis provides
extended FOL structures to compute quantitative extra-functional metrics of incomplete or
inconsistent architecture models.

In Contribution 1.1.1, we proposed 4-valued partial models [j2], which adopt the 4-valued
Belnap-Dunn logic [Bel77; KO17] to represent incomplete or inconsistent models. We also
introduced multi-objects to compactly represent from zero to many potential model elements
with a single object by interpreting the existence and equality of objects with 4-valued logic.
Object equality can be also used to denote the merging of elements from multiple sources of
information [SE06; CNS12], where inconsistency-tolerance is exploited to mark merge conflicts
and conflicting executions of composite view transformations [c7; d21] (Challenge 3).

In Contribution 1.1.2, we proposed an abstraction for numerical attribute values and graph
metrics [j2] (Challenge 5) in partial models by exploiting interval abstraction [Kul09] to combine
partial modeling with value analysis [FFJ12].

Lastly, in Contribution 1.2, we proposed scoped partial models [j1] as a conceptual core for
evaluating model size constraints over partial models (Challenge 5). By employing polyhedron
abstraction [BHZ08], they offer finer-grained abstraction over the number of model elements
represented by multi-objects. This allows representing extra-functional constraints on the
number of model elements (e.g., model size constraints, linear cost functions) within the partial
model. As a limitation, scoped partial models rely on 3-valued logic [SV17] and lack inconsistency-
tolerance.

Contribution group 1 I defined 4-valued and scoped extensions of the partial graph model
formalism for the quantitative extra-functional analysis of system architecture models with
unknown properties and pending design decisions.

Contribution 1.1 I formalized 4-valued partial models as a conceptual core to introduce
inconsistency-tolerance into architecture models and other graph models [j2; c7; d21].
1.1.1. I proposed the use of 4-valued Belnap–Dunn logic to explicitly capture both un-

known properties and pending design decisions (paracompleteness), as well as inconsi-

123



7. Summary of contributions

tencies (paraconsistency).
1.1.2. I proposed the use of interval abstraction to handle unknown and uncertain attribute

values, which enables the under- and over-approximation of logic formulas over models
containing complex numerical constraints.

Contribution 1.2 I formalized scoped partial models as a conceptual core for model generation
with linear numerical constraints, proposing the use of polyhedron abstraction to express
constraints on model size, number of graph pattern matches, and costs [j1].

Added value The contributions in this contribution group provide abstractions for incom-
plete and inconsistent architecture models for evaluating structural and numerical constrains
and quantitative extra-functional metrics. As such, they serve as a theoretical basis for the
contributions in Contributions groups 2–3.

In particular, the under- and over-approximation of constraint satisfaction enables the use of
the abstract DPLL [NOT06; Bra+13] algorithms for the synthesis of architecture models. They
aid in detecting surely violated functional and extra-functional requirements. Hence, when
designing an architecture, mistakes and inconsistencies can be detected even before the full
model is ready [CNS12; SV17][c7]. In automated synthesis, the detection of inconsistencies
results in backtracking in the search space [SNV18; Var+18][j1] to speed up model generation.

To our best knowledge, these contributions are the first to address the sound and complete
abstract DPLL synthesis of candidate architecture models.

Applications and related contributions Contributions in this contribution group were
published as part of joint work with Dániel Varró, Oszkár Semeráth, and Aren A. Babikian.

Joint work also with Zoltán Micskei, András Vörös, Zoltán Szatmári, and Csaba Hajdu [c8]
proposed an end-to-end framework for the run-time monitoring and testing of autonomous vehi-
cles with coverage metrics based on qualitative graph abstractions. Building on this framework,
joint work also with Anqi Li [j3; c9; d20] investigated the synthesis of test cases for data process-
ing systems and self-driving vehicles by adopting constant abstraction to represent unknown
attribute values, which are then filled by an SMT solver [MB08]. This approach introduces
refinement units as a means to unify various reasoning techniques with partial graph models
and abstract domains.

7.2 Reasoning with partial models

The second group of contributions in this thesis is aimed at providing reasoning capabilities over
partial models for extra-functional analyses.

Contribution 2.1 [c7; d21] proposes a novel view transformation language and a transformation
engine as an open source prototype implementation primarily aimed at the construction of
analysis models from architecture models.

The transformation language provides parallel composition of transformation to enable the
integration of knowledge (such as the dependability attributes of various system components
in Challenge 3) from multiple experts. We introduced relation-based composition, where the
composition can be fine-tuned by providing a glue transformation without having to modify the
composed transformations.

Thanks to the change-driven execution of the underlying Viatra Query and Transformation
framework [Ujh+15], a reactive and target incremental transformation engine is obtained. Ex-
ploiting the inconsistency-tolerance of 4-valued partial models from Contribution 1.1, the proposed
transformation engine remains validating (Challenge 2) and explicitly marks inconsistencies
even if the composed transformations or the state of the source model are not consistent. An

124



7. Summary of contributions

implicitly constructed traceability model links source and target elements so that analysis results
can be back-annotated to the architecture model.

Contribution 2.2 [j1] targets the synthesis of design candidates with multiplicity constraints
(i.e., structural constraints with lower or upper bounds on the number of model objects or
relationships) in Challenge 5. The proposed model generator also supports an extended version
of class scopes, which are a popular approach for constraining model generation problems
introduced by Alloy [Jac02].

More complex logical well-formedness constraints, as in Challenge 2, can also be handled
by manual translation to linear inequalities and scoped partial models (Contribution 1.2).

Numerical reasoning is provided by Linear Programming (LP) and Integer Linear Program-
ming (ILP) solvers, such as [Clp; Cbc]. Based on these low-level background theories, we provide
scope propagation operators for scoped partial models that refine under- and over-approximations
for partial model metrics. The refined approximations for metrics are used to prune the search
space (Challenge 1) in an abstract DPLL [NOT06; Bra+13] decision procedure.

Contribution group 2 I proposed two reasoning techniques for deriving quantitative extra-
functional metrics from partial models of systems and considering multiplicity constraints
on architecture models.

Contribution 2.1 I proposed a fully compositional view transformation language and devel-
oped a reactive, incremental, validating, and inconsistency-tolerant view transformation
engine for executing view transformations using 4-valued partial models [c7; d21].
2.1.1. I identified the levels of parallel composition support in view transformation languages,

as well as the consistent and validating properties of view transformation engines.
2.1.2. I defined a fully compositional view transformation language.
2.1.3. I proposed a reactive, incremental, validating, and inconsistecy-tolerant transformation

engine for unidirectional view transformations based on 4-valued partial models.
2.1.4. I evaluated the practical applicability and scalability of the approach using the open

source Train Benchmark framework.

Contribution 2.2 I proposed a model generation approach that combines a DPLL-like decision
procedure based on partial modeling with LP and ILP background solvers to synthesize
and optimize models according to objective functions defined as linear programs, such as
multiplicity constraints, total model size, and cost functions, using scoped partial models [j1].
2.2.1. I defined a mapping of structural and well-formedness constraints into linear numer-

ical constraints that can under- and over-approximated on scoped partial models to
efficiently guide model generation.

2.2.2. I extended an open-source graph solver with scoped partial model support by integrat-
ing LP and ILP solvers for numerical reasoning.

2.2.3. I evaluated the effectiveness of the approach using multiple industrial case studies,
including a satellite constellation synthesis task from NASA JPL.

Added value To our best knowledge, the presented transformation engine is the first to
support reactive, validating, inconsistency-tolerant execution of view transformations with parallel
composition [c7]. This allows for the collaboration of multiple domain experts in the design
of transformations, and the combination of transformations relating to multiple viewpoints,
while still enabling the validation of target model structural constraints and the incremental
maintenance of the target model according to source model updates.

In our empirical evaluations, reasoning with scoped partial models provided a 7-fold reduction
in running time for model generation in problemswith complexmultiplicity constraints [j1]. Even
in domains without such constraints, the overhead added by scope propagation is minimal. While

125



7. Summary of contributions

unsatisfiable problems usually pose a difficulty to model generators based on partial modeling,
scope propagation operators can efficiently detect unsatisfiable multiplicity constraints with LP
and ILP background solvers, leading to much better scalability.

Applications and related contributions Contributions in this contribution group were
published as part of joint work with Dániel Varró and Oszkár Semeráth.

The proposed ViewModel view transformation engine is available as an open source project
under the Eclipse Public License 1.0 at https://github.com/ftsrg/viewmodel and in [d21].
The tools has been applied for automatically constructing Stochastic Petri Net (SPN) reliability
analysis models for design candidates of a redundant automotive subsystem in an industrial
project with thyssenkrupp Hungary Kft.

The implementation of the proposed scope propagation strategies is available as part of the
open source Viatra-Generator model generation framework under the Eclipse Public License 1.0
at https://github.com/viatra/VIATRA-Generator.

Joint work also with Gábor Szárnyas, Aren A. Babikian, Boqi Chen, and Chuning Li investi-
gated the generation of realistic test cases for modelling tools by focusing the generator towards
practically relevant corner cases [j4]. To ensure the realistic distribution of model elements by
type, we relied on numerical reasoning techniques introduced in this contribution group.

Related contributions by my student Máté Földiák focused on numerical reasoning with
reliability and performability metrics directly over partial models (instead of constructing separate
analysis models) by computing under- and over-approximations. An initial prototype [c10; d22]
was created that synthesizes optimal satellite constellation mission architectures [Her+17]
according to performability objectives based on the refinement unit framework [j3; c9].

Joint work also with Boqi Chen and Sebastian Pilarski investigated the use logic reasoning
with graphs for ensuring consistency in image recognition [c11].

7.3 Model-based quantitative extra-functional analysis

The third group of contributions presents concrete applications of partial model based reasoning
for extra-functional analysis problems.

Contribution 3.1 [c12; l18; r19] provides a model-based technique for the automatic per-
formability evaluation (Challenge 3) of reconfigurable system architectures based on Stochastic
Petri Net (SPN) analysis models. As a specification language for performability properties, we
adopt the incremental view transformations from Contribution 2.1 to derive SPN models for each
possible configuration.

We introduced mission automata as an extension of the Graph Transformation Abstract
State Machine (GT+ASM) [VB07] formalism. The possible system failures are described by the
observable attributes of a run-time version of the architecture model, which are defined based on
the state of the SPN model and the traceability relationships between the architecture and SPN
models. The mission automaton reacts to failures by changing the structure or the controllable
attributes of the run-time model with graph transformations. We construct a Phased-Mission
System (PMS) [MB99] from the SPN analysis models, where the reachable state space of the
mission automaton serves as the high-level phase model.

Contribution 3.2 [j5] presents witness model synthesis in the domain-specific Worst-Case
Execution Time (WCET) analysis for graph query based runtime monitor programs (Challenge 4).
This allows us to tackle (i) WCET based on a single runtime snapshot, (ii) WCET based on the
metamodel and well-formedness constraints of the runtime snapshots, and (iii) WCET based on
a partial runtime snapshot.

Our analysis combines low-level Implicit Path Enumeration Technique (IPET) WCET analysis
with a high-level, domain specific analysis that takes into account the well-formedness constraints

126

https://github.com/ftsrg/viewmodel
https://github.com/viatra/VIATRA-Generator


7. Summary of contributions

of runtime models. We adapted the low-level IPET analyses from the OTAWA [Bal+10] and aiT
WCET analysis tools.

To obtain a high-level analysis, we associate auxiliary graph queries based on the runtime
monitor program with the variables of the IPET Integer Program to form a graph-based de-
scription of the WCET analysis problem. We synthesize the witness model using the extended
generator from Contribution 2.2.

Contribution group 3 I proposed analysis methods for the reliability and worst-case exe-
cution time estimation based on reasoning with partial models.

Contribution 3.1 I proposed a model-based technique for automatically deriving phased-
mission stochastic Petri net models for complex reconfigurable systems based on fully
compositional view transformations [c12; l18; r19].
3.1.1. I defined mission automata, a formalism that leverages graph transformation abstract

state machines (GT+ASM), as well as observable and controllable runtime features
in architecture models, for a high-level description of runtime reconfigurations in
cyber-physical systems.

3.1.2. I proposed a technique to construct phased-mission stochastic Petri nets for the depend-
ability analysis of reconfigurable cyber-physical systems, where the reconfigurations
are captured by a mission automaton, while the reliability processes of the system
are described by individual stochastic Petri nets automatically constructed from the
system architecture models via a view transformation.

3.1.3. I evaluated the practical applicability and scalability of the approach on a case study
based on the analysis of a reconfigurable production cell.

Contribution 3.2 I proposed an approach for finding witness models of worst-case execution
times of query-based runtime monitor programs in critical embedded systems by model
generation using scoped partial models with linear programming [j5].
3.2.1. I proposed a high-level static analysis technique for query-based runtime monitor

programs to estimate execution time on a given runtime model snapshot that combines
domain-specific information from query plans with state-of-the-art IPET low level
analysis output about the microarchitectural characteristics of the target execution
platform.

3.2.2. I formulated the witness generation problem as a model generation task with a linear
program objective.

3.2.3. I evaluated the practical applicability and scalability of the proposed approach by
generating witness models for queries from the open source Train Benchmark in the
context of the MoDeS3 CPS demonstrator.

Added value Model-based phased-mission system generation is an efficient, architecture-
based analysis method for reconfigurable CPS. In our experiments, analysis models with up
to 1028 different configurations could be constructed by exploring the state space of mission
automata within 20 sec.

In the MoDeS3 CPS demonstrator, domain-specific WCET analysis reduced the metamodel-
based WCET estimate with up to 12% compared to aiT and 25% compared to OTAWA on queries
where the well-formedness constraints of the possible runtime snapshots impacted the execution
time. It also managed to provide partial model based WCET estimates, while aiT provided an
incorrect (lower than the actual program execution time of hardware) estimate due to its lack of
partial model based estimate support.

Applications and related contributions Contributions in this contribution group were
published as part of joint work with Dániel Varró, Brett H. Meyer, and Márton Búr. The concept

127



7. Summary of contributions

of a witness model [j5] was introduced by Búr [Búr21].
Our background work related to dependability and performability analysis published jointly

also with Miklós Telek, Tamás Bartha, Dániel Darvas, Ákos Hajdu, Attila Klenik, and Vince
Molnár focused on the numerical solution of Generalized Stochastic Petri Net (GSPN) models.
In [c13; c14], we proposed a configurable GSPN analysis framework based on the block Kronecker
decomposition. In [c15], we proposed a symbolic state-space exploration engine for GSPN models.
The analysis framework is available as part of the PetriDotNet [j6] tool at https://inf.
mit.bme.hu/en/research/tools/petridotnet and was applied for the reliability analysis of a
redundant automotive subsystem in an industrial project with thyssenkrupp Hungary Kft.

Related contributions by my student Simon Nagy investigated hierarchical reliability mod-
eling and analysis based on statecharts and probabilistic programming [c16]. The resulting
tool is available as part of the open source Gamma Statechart Composition Framework under
the Eclipse Public License 1.0 at https://github.com/FTSRG/gamma. The tool was also used
in our industrial project and a case study model adapted from the project is available in the
Models for Formal Analysis of Real Systems (MARS) repository at http://mars-workshop.org/
repository/028-EPAS.html. Related contributions by my student Dániel Szekeres investigated
efficient numeric solution of large Continuous-Time Markov Chains (CTMC) arising from Static
Fault Tree (SFT) analysis using the Tensor Train decomposition for large matrices [c17]. An open
source prototype implementation of the analysis tool is available under the Apache License 2.0
at https://github.com/ftsrg/StoATT.

7.4 Future work

Our long-term research goal is to facilitate the design of complex system architectures according
to various, stringent functional and extra-functional requirements by unifying and developing
reasoning techniques for their analysis and synthesis.

In particular, we highlight the following open challenges for future research:

• Integration of reasoning techniques within sound and complete design-space exploration.
While this work addressed the use of 4-valued logic [Bel77][c7; j2] to explicitly highlight in-
consistencies in architecture and analysis models, as well as polyhedron abstraction [CH78;
BHZ08][j1] to reason about model size constraints and other linear inequalities, the simul-
taneous use of such abstractions remains unresolved. More broadly, the use of relational
abstractions [Min04] or other abstract domains could lead to more efficient design-space
exploration by pruning unsuitable design candidates earlier.

• Integration of external extra-functional analysis and reasoning tools. Partial model based
analysis approaches can reason about many variants of a given design at once by explicitly
encoding design decisions that are yet to be made. Hence, feedback about candidate
architectures can be provided early in the design process. An initial attempt at inte-
grating existing analyses as refinement units was made in [j3; c9], where external SMT
solvers [MB08] are used to determine attribute values, and in [c10], where the performa-
bility of architectures is estimated with Markov chains. Nevertheless, further research is
needed to improve analysis performance and explore the set of extra-functional analyses
which can be executed on partial architectures.

• Reasoning about system behavior during adaptation at runtime. Self-adaptive strategies
for run-time adaptation, where new system configurations are synthesized at runtime in
response to failure events of the system, require quantitative verification of the configura-
tions at runtime [Cal+12]. Sound and complete design-space exploration techniques for
configuration synthesis could support provably sound adaptation strategies.

128

https://inf.mit.bme.hu/en/research/tools/petridotnet
https://inf.mit.bme.hu/en/research/tools/petridotnet
https://github.com/FTSRG/gamma
http://mars-workshop.org/repository/028-EPAS.html
http://mars-workshop.org/repository/028-EPAS.html
https://github.com/ftsrg/StoATT


Publications

Number of publications 23

Number of peer-reviewed journal papers (written in English) 6

Number of articles in journals indexed by WoS or Scopus 5

Number of publications (in English) with at least 50% contribution 5

Number of peer-reviewed publications 21

Number of independent citations (as of January 2023) 98

Publications related to the contributions

Journal
papers

International conference
and workshop papers

Reports and
artifacts

Group 1 [j1]∗, [j2], [j3] [c7]∗, [c8], [c9] [d20]

Group 2 [j1]∗, [j4] [c7]∗, [c10], [c11] [d21], [d22]

Group 3 [j5], [j6] [c12], [c13], [c14], [c15], [c16], [c17] [l18], [r19]
∗Publication related to multiple contribution groups

This classification follows the PhD publication scoring system of the faculty.

Journal papers

[j1] Kristóf Marussy, Oszkár Semeráth, and Dániel Varró. “Automated Generation of Consistent
Graph Models with Multiplicity Reasoning”. In: IEEE Trans. Softw. Eng. 48.5 (2022), pp. 1610–1629.
doi: 10.1109/TSE.2020.3025732

[j2] Kristóf Marussy, Oszkár Semeráth, Aren A. Babikian, Dániel Varró. “A Specification Language
for Consistent Model Generation based on Partial Models”. In: J. Obj. Technol. 19.3, 12 (2021). doi:
10.5381/jot.2020.19.3.a12

[j3] Aren A. Babikian, Oszkár Semeráth, Anqi Li, Kristóf Marussy, Dániel Varró. “Automated Genera-
tion of Consistent Models by Combining Geometric and Qualitative Reasoning”. In: Softw. Syst.
Model. (2021). doi: 10.1007/s10270-021-00918-6

[j4] Oszkár Semeráth, Aren A. Babikian, Boqi Chen, Chuning Li, Kristóf Marussy, Gábor Szárnyas,
Dániel Varró. “Automated generation of consistent, diverse and structurally realistic graph models”.
In: Softw. Syst. Model. (2021). doi: 10.1007/s10270-021-00884-z

129

https://doi.org/10.1109/TSE.2020.3025732
https://doi.org/10.5381/jot.2020.19.3.a12
https://doi.org/10.1007/s10270-021-00918-6
https://doi.org/10.1007/s10270-021-00884-z


Publications

[j5] Márton Búr, Kristóf Marussy, Brett H. Meyer, Dániel Varró. “Worst-Case Execution Time Calcu-
lation for Query-Based Monitors by Witness Generation”. In: ACM Trans. Embed. Comput. Syst.
20.6 (2021), pp. 1–36. doi: 10.1145/3471904. arXiv: 2102.03116 [cs.SE]

[j6] András Vörös, Dániel Darvas, Ákos Hajdu, Attila Klenik, Kristóf Marussy, Vince Molnár, Tamás
Bartha, István Majzik. “Industrial applications of the PetriDotNet modelling and analysis tool”. In:
Sci. Comput. Program. 157 (2018), pp. 17–40. doi: 10.1016/j.scico.2017.09.003

International conference and workshop papers
[c7] Kristóf Marussy, Oszkár Semeráth, and Dániel Varró. “Incremental View Model Synchronization

Using Partial Models”. In: Proceedings of the 21th ACM/IEEE International Conference onModel Driven
Engineering Languages and Systems. ACM, 2018, pp. 323–333. doi: 10.1145/3239372.3239412

[c8] István Majzik, Oszkár Semeráth, Csaba Hajdu, Kristóf Marussy, Zoltán Szatmári, Zoltán Miskei,
András Vörös, Aren A. Babikian, Dániel Varró. “Towards System-Level Testing with Coverage
Guarantees for Autonomous Vehicles”. In: ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems. IEEE, 2019. doi: 10.1109/MODELS.2019.00-12

[c9] Oszkár Semeráth, Aren A. Babikian, Anqi Li, Kristóf Marussy, Dániel Varró. “Automated gener-
ation of consistent models with structural and attribute constraints”. In: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems. ACM,
2020, pp. 187–199. doi: 10.1145/3365438.3410962

[c10] Máté Földiák, Kristóf Marussy, Dániel Varró, István Majzik. “System Architecture Synthesis for
Performability by Logic Solvers”. In: Proceedings of the 25th ACM / IEEE International Conference
on Model Driven Engineering Languages and Systems. ACM, 2022. doi: 10.1145/3550355.3552448

[c11] Boqi Chen, Kristóf Marussy, Sebastian Pilarski, Oszkár Semeráth, Dániel Varró. “Consistent
Scene Graph Generation by Constraint Optimization”. In: 37th IEEE/ACM International Conference
on Automated Software Engineering. ACM, 2022. doi: 10.1145/3551349.3560433. Forthcoming

[c12] Kristóf Marussy and István Majzik. “Constructing Dependability Analysis Models of Reconfig-
urable Production Systems”. In: IEEE 14th International Conference on Automation Science and
Engineering. IEEE, 2018. doi: 10.1109/COASE.2018.8560551

[c13] Kristóf Marussy, Attila Klenik, Vince Molnár, András Vörös, István Majzik, Miklós Telek. “Effi-
cient Decomposition Algorithm for Stationary Analysis of Complex Stochastic Petri Net Models”. In:
PETRI NETS 2016. LNCS 9698. Springer, 2016, pp. 281–300. doi: 10.1007/978-3-319-39086-4_17

[c14] Kristóf Marussy, Attila Klenik, Vince Molnár, András Vörös, Miklós Telek, István Majzik. “Config-
urable numerical analysis for stochastic systems”. In: 2016 International Workshop on Symbolic and
Numerical Methods for Reachability Analysis (SNR). IEEE, 2016. doi: 10.1109/SNR.2016.7479383

[c15] Kristóf Marussy, Vince Molnár, András Vörös, István Majzik. “Getting the Priorities Right:
Saturation for Prioritised Petri Nets”. In: PETRI NETS 2017. LNCS 10258. Springer, 2017, pp. 223–
242. doi: 10.1007/978-3-319-57861-3_14

[c16] Simon József Nagy, Bence Graics, Kristóf Marussy, András Vörös. “Simulation-based Safety
Assessment of High-level Reliability Models”. In: Proceedings of the 4th Workshop on Models for
Formal Analysis of Real Systems. EPTCS 316. 2020. doi: 10.4204/EPTCS.316.9. arXiv: 2004.13290
[cs.SE]

[c17] Dániel Szekeres,KristófMarussy, and IstvánMajzik. “Tensor-based reliability analysis of complex
static fault trees”. In: 17th European Dependable Computing Conference. IEEE, 2021. doi: 10.1109/
EDCC53658.2021.00012

Local workshop paper
[l18] KristófMarussy and IstvánMajzik. “Architecture-based Dependability Analysis of Reconfigurable

and Adaptive Systems”. In: Proceedings of the 26thMinisymposium of the Department of Measurement
and Information Systems. BME Méréstechnika és Információs Rendszerek Tanszék, 2019

130

https://doi.org/10.1145/3471904
https://arxiv.org/abs/2102.03116
https://doi.org/10.1016/j.scico.2017.09.003
https://doi.org/10.1145/3239372.3239412
https://doi.org/10.1109/MODELS.2019.00-12
https://doi.org/10.1145/3365438.3410962
https://doi.org/10.1145/3550355.3552448
https://doi.org/10.1145/3551349.3560433
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1007/978-3-319-39086-4_17
https://doi.org/10.1109/SNR.2016.7479383
https://doi.org/10.1007/978-3-319-57861-3_14
https://doi.org/10.4204/EPTCS.316.9
https://arxiv.org/abs/2004.13290
https://arxiv.org/abs/2004.13290
https://doi.org/10.1109/EDCC53658.2021.00012
https://doi.org/10.1109/EDCC53658.2021.00012


Publications

Technical report (not peer reviewed)
[r19] Kristóf Marussy and István Majzik. Constructing Phased-Mission Systems for Dependability

Analysis of Reconfigurable Production Systems. Tech. rep. 2018. url: http://doi.org/10.5281/
zenodo.1290661

Artifacts (peer reviewed as part of the corresponding publications)
[d20] Oszkár Semeráth, Aren A. Babikian, Anqi Li, Kristóf Marussy, Dániel Varró. Artifacts for “Auto-

mated Generation of Consistent Models with Structural and Attribute Constraints”. Approved as reuse-
able by the MODELS ’20 Artifact Evaluation Committee [c9]. 2020. doi: 10.5281/zenodo.3950552

[d21] Kristóf Marussy, Oszkár Semeráth, and Dániel Varró. ViewModel Tool and Benchmark Results
for “Incremental View Model Synchronization Using Partial Models”. Approved by the MODELS ’18
Artifact Evaluation Committee [c7]. 2018. doi: 10.5281/zenodo.1318156

[d22] Máté Földiák, Kristóf Marussy, Dániel Varró, István Majzik. Artifacts for “System Architecture
Synthesis for Performability by Logic Solvers”. Approved as functional by the MODELS ’22 Artifact
Evaluation Committee [c10]. 2022. doi: 10.5281/zenodo.6974248

Additional publications (not related to the contributions)

Book chapter
[b23] Nenad Tomašev, Krisztián Buza, Kristóf Marussy, Piroska Buzáné Kis. “Hubness-Aware Clas-

sification, Instance Selection and Feature Construction: Survey and Extensions to Time-Series”.
In: Feature Selection for Data and Pattern Recognition. SCI 584. Springer, 2015, pp. 231–261. doi:
10.1007/978-3-662-45620-0_11

International conference and workshop papers
[c24] Kristóf Marussy and Krisztián Buza. “SUCCESS: A New Approach for Semi-supervised Classifica-

tion of Time-Series”. In: ICAISC 2013. LNCS 7894. Springer, 2013, pp. 437–447. doi: 10.1007/978-
3-642-38658-9_39

[c25] Krisztián Buza, Júlia Koller, and Kristóf Marussy. “PROCESS: Projection-Based Classification
of Electroencephalograph Signals”. In: ICAISC 2015. LNCS 9120. Springer, 2015, pp. 91–100. doi:
10.1007/978-3-319-19369-4_9

[c26] KristófMarussy, Ladislav Peska, and Krisztián Buza. “Recommendations of Unique Items Based on
Bipartite Graphs”. In: Proceedings of the 9th Hungarian-Japanese Symposium on Discrete Mathematics
and Its Applications. Kyushu University, 2015

Local workshop paper
[l27] Kristóf Marussy and Krisztián Buza. “Hubness-based indicators for semi-supervised time-series

classification”. In: 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications.
BME, 2013

Poster
[a28] Kristóf Marussy and Krisztián Buza. “PROGRESS: Projection-Based Gene Expression Classifica-

tion”. In: Innovations in Medicine Conference. Akadémiai Kiadó, 2014

131

http://doi.org/10.5281/zenodo.1290661
http://doi.org/10.5281/zenodo.1290661
https://doi.org/10.5281/zenodo.3950552
https://doi.org/10.5281/zenodo.1318156
https://doi.org/10.5281/zenodo.6974248
https://doi.org/10.1007/978-3-662-45620-0_11
https://doi.org/10.1007/978-3-642-38658-9_39
https://doi.org/10.1007/978-3-642-38658-9_39
https://doi.org/10.1007/978-3-319-19369-4_9




References

[Abd+14] Hani Abdeen et al. “Multi-objective optimization in rule-based design space exploration”. In:
ASE ’14. ACM, 2014, pp. 289–300. doi: 10.1145/2642937.2643005.

[Abd+18] Raja Ben Abdessalem et al. “Testing Autonomous Cars for Feature Interaction Failures Using
Many-Objective Search”. In: 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 143–154. doi: 10.1145/3238147.3238192.

[Abe+15] JaumeAbella et al. “WCET analysismethods: Pitfalls and challenges on their trustworthiness”.
In: 10th IEEE International Symposium on Industrial Embedded Systems. IEEE, 2015, pp. 39–48.
doi: 10.1109/SIES.2015.7185039.

[ACG17] Mohammed Al-Refai, Walter Cazzola, and Sudipto Ghosh. “A Fuzzy Logic Based Approach
for Model-Based Regression Test Selection”. In: MODELS. IEEE, 2017, pp. 55–62. doi: 10.
1109/MODELS.2017.17.

[ADW16] Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, and Andrzej Wasowski. “Symbolic execu-
tion of high-level transformations”. In: SLE. Springer, 2016, pp. 207–220.

[AG16] Colin Atkinson and Ralph Gerbig. “Flexible Deep Modeling with Melanee”. In: Modellierung
Workshopband. Vol. P-255. LNI. GI, 2016, pp. 117–122. url: https://dl.gi.de/20.500.
12116/843.

[Agr+02] Aditya Agrawal et al. “Generative Programming via Graph Transformations in the Model-
Driven Architecture”. In: Workshop on Generative Techniques in the Context of Model Driven
Architecture, OOPSLA. 2002.

[Ajm+94] Marco Ajmone Marsan et al. Modelling with Generalized Stochastic Petri Nets. John Wiley &
Sons, 1994. isbn: 0-471-93059-8.

[AK01] Colin Atkinson and Thomas Kühne. “The Essence of Multilevel Metamodeling”. In: UML.
Vol. 2185. LNCS. Springer, 2001, pp. 19–33. doi: 10.1007/3-540-45441-1\_3.

[Ale+09] Aldeida Aleti et al. “ArcheOpterix: An extendable tool for architecture optimization of AADL
models”. In: MOMPES. IEEE, 2009, pp. 61–71. doi: 10.1109/MOMPES.2009.5069138.

[Alk+20] Bader Alkhazi et al. “Multi-criteria test cases selection for model transformations”. In: Autom.
Softw. Eng. (2020). doi: 10.1007/s10515-020-00271-w.

[Ana+10] Kyriakos Anastasakis et al. “On challenges of model transformation from UML to Alloy”. In:
Softw. Syst. Model. 9.1 (2010), pp. 69–86.

[Anj+14] Anthony Anjorin et al. “Efficient Model Synchronization with View Triple Graph Grammars”.
In: ECMFA 2014. Springer, 2014. doi: 10.1007/978-3-319-09195-2_1.

[Anj+17] Anthony Anjorin et al. “BenchmarX Reloaded: A Practical Benchmark Framework for
Bidirectional Transformations”. In: BX@ETAPS. Vol. 1827. CEUR Workshop Proceedings.
CEUR-WS.org, 2017, pp. 15–30. url: http://ceur-ws.org/Vol-1827/paper12.pdf.

[APV09] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. “Symbolic execution with abstrac-
tion”. In: Int. J. Softw. Tools Technol. Transf. 11.1 (2009), pp. 53–67. doi: 10.1007/s10009-
008-0090-1.

133

https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/MODELS.2017.17
https://doi.org/10.1109/MODELS.2017.17
https://dl.gi.de/20.500.12116/843
https://dl.gi.de/20.500.12116/843
https://doi.org/10.1007/3-540-45441-1\_3
https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1007/s10515-020-00271-w
https://doi.org/10.1007/978-3-319-09195-2_1
http://ceur-ws.org/Vol-1827/paper12.pdf
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1007/s10009-008-0090-1


References

[Arc+18] Davide Arcelli et al. “EASIER: An Evolutionary Approach for Multi-objective Software
ArchItecturE Refactoring”. In: ISCA. IEEE, 2018, pp. 105–114. doi: 10.1109/ICSA.2018.
00020.

[Are+10] Thorsten Arendt et al. “Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations”. In: MODELS 2010. Springer, 2010, pp. 121–135. doi: 10.1007/978-3-642-
16145-2_9.

[Bak+13] Kacper Bak et al. “Clafer: unifying class and feature modeling”. In: Softw. Syst. Model. (2013),
pp. 1–35.

[Bal+10] Clément Ballabriga et al. “OTAWA: An Open Toolbox for Adaptive WCET Analysis”. In:
Software Technologies for Embedded and Ubiquitous Systems. LNCS 6399. Springer, 2010,
pp. 35–46. doi: 10.1007/978-3-642-16256-5_6.

[Bal+15] Paolo Ballarini et al. “HASL: A new approach for performance evaluation andmodel checking
from concepts to experimentation”. In: Perform. Eval. 90 (2015), pp. 53–77. doi: 10.1016/j.
peva.2015.04.003.

[Ban+13] Kshitij Bansal et al. “Structural Counter Abstraction”. In: TACAS 2013. Vol. 7795. LNCS.
Springer, 2013, pp. 62–77. doi: 10.1007/978-3-642-36742-7_5.

[Bar+12] Edd Barrett et al. “Virtual machine warmup blows hot and cold”. In: Proc. ACM Program.
Lang. 1.OOPSLA (2012). Article No.: 52. doi: 10.1145/3133876.

[Bar+18] Ezio Bartocci et al. “Specification-Based Monitoring of Cyber-Physical Systems: A Survey
on Theory, Tools and Applications”. In: Lectures on Runtime Verification. Springer, 2018,
pp. 135–175.

[BBF09] Gordon S. Blair, Nelly Bencomo, and Robert B. France. “Models@run.time”. In: IEEE Computer
42.10 (2009), pp. 22–27. doi: 10.1109/MC.2009.326.

[BC12] Fabian Büttner and Jordi Cabot. “Lightweight String Reasoning for OCL”. In: ECMFA.
Vol. 7349. LNCS. Springer, 2012, pp. 244–258.

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. “A Static Analysis Technique for Graph
Transformation Systems”. In: CONCUR. Vol. 2154. LNCS. Springer, 2001, pp. 381–295. doi:
10.1007/3-540-44685-0_26.

[BDD04] Simona Bernardi, Susanna Donatelli, and Giovanna Dondossola. “Towards a Methodological
Approach to Specification and Analysis of Dependable Automation Systems”. In: Springer,
2004, pp. 36–51. doi: 10.1007/978-3-540-30206-3_5.

[Bea+10] Olivier Beaudoux et al. “Active Operations on Collections”. In: MODELS 2010. Springer, 2010.
doi: 10.1007/978-3-642-16145-2_7.

[Bel77] Nuel D. Belnap. “A Useful Four-Valued Logic”. In: Modern Uses of Multiple-Valued Logic.
Springer, 1977, pp. 5–37. doi: 10.1007/978-94-010-1161-7_2.

[Ben+15] Amine Benelallam et al. “Distributed model-to-model transformation with ATL on MapRe-
duce”. In: SLE. ACM, 2015, pp. 37–48. doi: 10.1145/2814251.2814258.

[Ben+18] R. Ben Abdessalem et al. “Testing Vision-Based Control Systems Using Learnable Evolution-
ary Algorithms”. In: ICSE. 2018, pp. 1016–1026. doi: 10.1145/3180155.3180160.

[Ber+11] Gábor Bergmann et al. “A Graph Query Language for EMF models”. In: ICMT. LNCS 6707.
Springer, 2011, pp. 167–182. doi: 10.1007/978-3-642-21732-6_12.

[Ber+12a] Gábor Bergmann et al. “Change-driven model transformations”. In: Softw. Syst. Model. 11.3
(2012), pp. 431–461. doi: 10.1007/s10270-011-0197-9.

[Ber+12b] Gábor Bergmann et al. “Incremental Pattern Matching for the Efficient Computation of
Transitive Closure”. In: ICGT 2012. Springer, 2012, pp. 386–400. doi: 10.1007/978-3-642-
33654-6.

[Ber+15] Gábor Bergmann et al. “VIATRA 3: A Reactive Model Transformation Platform”. In: ICMT.
Springer, 2015, pp. 101–110.

134

https://doi.org/10.1109/ICSA.2018.00020
https://doi.org/10.1109/ICSA.2018.00020
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1016/j.peva.2015.04.003
https://doi.org/10.1016/j.peva.2015.04.003
https://doi.org/10.1007/978-3-642-36742-7_5
https://doi.org/10.1145/3133876
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1007/3-540-44685-0_26
https://doi.org/10.1007/978-3-540-30206-3_5
https://doi.org/10.1007/978-3-642-16145-2_7
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1145/2814251.2814258
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1007/978-3-642-21732-6_12
https://doi.org/10.1007/s10270-011-0197-9
https://doi.org/10.1007/978-3-642-33654-6
https://doi.org/10.1007/978-3-642-33654-6


References

[BFK19] Axel Busch, Dominik Fuchss, and Anne Koziolek. “PerOpteryx: Automated Improvement
of Software Architectures”. In: ICSA. IEEE, 2019, pp. 162–165. doi: 10.1109/ICSA-C.2019.
00036.

[BFL17] Clément Ballabriga, Julien Forget, and Giuseppe Lipari. “Symbolic WCET computation”. In:
ACM Trans. Embedded Comput. Syst. 17.2 (2017). doi: 10.1145/3147413.

[BFS00] Peter Buneman, Mary Fernandez, and Dan Suciu. “UnQL: a query language and algebra for
semistructured data based on structural recursion”. In: VLDB J. 9.1 (2000). doi: 10.1007/
s007780050084.

[BG01] Jean Bézivin and Olivier Gerbé. “Towards a Precise Definition of the OMG/MDA Framework”.
In: Proc. 16th IEEE Int. Conf. Autom. Softw. Eng. IEEE, 2001. doi: 10.1109/ASE.2001.989813.

[BHZ08] Roberto Bagnara, Particia M. Hill, and Enea Zaffanella. “The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of hardware
and software systems”. In: Sci. Comput. Program. 72.1-2 (2008), pp. 3–21. doi: 10.1016/j.
scico.2007.08.001.

[BKR08] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model for
model-driven performance prediction”. In: J. Sys. Softw. 82.1 (2008), pp. 3–22. doi: 10.1016/
j.jss.2008.03.066.

[BKS02] B. Beckert, U. Keller, and P. H. Schmitt. “Translating the Object Constraint Language into
First-order Predicate Logic”. In: Proc. VERIFY, Workshop at FLoC. 2002.

[BMM99] Andrea Bondavalli, Ivan Mura, and István Majzik. “Automatic Dependability Analysis for
Supporting Design Decisions in UML”. In: Proc. 4th IEEE Int. Symp. High-Assur. Syst. Eng.
IEEE, 1999, pp. 64–74. doi: 10.1109/HASE.1999.809476.

[BMP12] Simona Bernardi, José Merseguer, and Dorina C. Petriu. “Dependability modeling and
analysis of software systems specified with UML”. In: ACM Comput. Surv. 45.1 (2012). doi:
10.1145/2379776.2379778.

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “aZ – An Optimizing SMT Solver”.
In: TACAS. Vol. 9035. LNCS. Springer, 2015, pp. 194–199. doi: 10.1007/978-3-662-46681-
0_14.

[Bra+13] Martin Brain et al. “An Abstract Interpretation of DPLL() )”. In: VMCAI 2013. LNCS 7737.
Springer, 2013, pp. 455–475. doi: 10.1007/978-3-642-35873-9_27.

[Bru+15] Hugo Brunelière et al. “EMF Views: A View Mechanism for Integrating Heterogeneous
Models”. In: ER 2015. Springer, 2015, pp. 317–325. doi: 10.1007/978-3-319-25264-3_23.

[Bru+17] Hugo Brunelière et al. “A feature-based survey of model view approaches”. In: Softw. Syst.
Model. (2017). doi: 10.1007/s10270-017-0622-9.

[BSC10] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. “Automated analysis of feature
models 20 years later: A literature review”. In: Inf. Syst. 35.6 (2010), pp. 615–636. doi: 10.
1016/j.is.2010.01.001.

[Bur+04] Sven Burmester et al. “Incremental design and formal verification with UML/RT in the
FUJABA real-time tool suite”. In: Proceedings of the International Workshop on Specification
and Validation of UML Models for Real Time and Embedded Systems, SVERTS2004. 2004.

[Bur+05] Sven Burmester et al. “Worst-case execution time optimization of story patterns for hard
real-time systems”. In: 3rd International Fujaba Days. 2005, pp. 71–78.

[Búr+18] Márton Búr et al. “Distributed graph queries for runtime monitoring of cyber-physical
systems”. In: LNCS 10802. 2018, pp. 111–128. doi: 10.1007/978-3-319-89363-1_7.

[Búr+20] Márton Búr et al. “Distributed graph queries over models@run.time for runtime monitoring
of cyber-physical systems”. In: Int. J. Softw. Tools Technol. Transf. 22 (2020), pp. 79–102. doi:
10.1007/s10009-019-00531-5.

[Búr21] Márton Búr. “Query-Based Runtime Monitoring in Real-Time and Distributed Systems”.
PhD thesis. McGill University, 2021. url: https://imbur.github.io/phd/marton-bur-
thesis.pdf.

135

https://doi.org/10.1109/ICSA-C.2019.00036
https://doi.org/10.1109/ICSA-C.2019.00036
https://doi.org/10.1145/3147413
https://doi.org/10.1007/s007780050084
https://doi.org/10.1007/s007780050084
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/HASE.1999.809476
https://doi.org/10.1145/2379776.2379778
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-642-35873-9_27
https://doi.org/10.1007/978-3-319-25264-3_23
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/s10009-019-00531-5
https://imbur.github.io/phd/marton-bur-thesis.pdf
https://imbur.github.io/phd/marton-bur-thesis.pdf


References

[Büt+12] Fabian Büttner et al. “Verification of ATL Transformations Using Transformation Models
and Model Finders”. In: ICFEM. Springer, 2012, pp. 198–213.

[BZJ21] Alexandru Burdusel, Steffen Zschaler, and Stefan John. “Automatic generation of atomic
multiplicity-preserving search operators for search-based model engineering”. In: Softw.
Syst. Model. 20.6 (2021), pp. 1857–1887. doi: 10.1007/s10270-021-00914-w.

[BZS18] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. “MDEoptimiser: A Search Based
Model Engineering Tool”. In: MODELS. ACM, 2018, pp. 12–16. doi: 10.1145/3270112.
3270130.

[CA05] Krzysztof Czarnecki and Michał Antkiewicz. “Mapping Features to Models: A Template
Approach Based on Superimposed Variants”. In: GPCE. Springer, 2005, pp. 422–437. doi:
10.1007/11561347_28.

[Cal+12] Radu Calinescu et al. “Self-Adaptive Software Needs Quantitative Verification at Runtime”.
In: Comm. ACM 55.9 (2012), pp. 69–77. doi: 10.1145/2330667.2330686.

[Cal+17] Radu Calinescu et al. “RODES: A Robust-Design Synthesis Tool for Probabilistic Systems”. In:
QEST. Vol. 10503. LNCS. Springer, 2017, pp. 304–308. doi: 10.1007/978-3-319-66335-7\_20.

[CB02] Antoine Colin and Guillem Bernat. “Scope-tree: A program representation for symbolic
worst-case execution time analysis”. In: Proceedings 14th Euromicro Conference on Real-Time
Systems. Euromicro RTS 2002. IEEE, 2002, pp. 50–59.

[Cbc] COIN-OR. Cbc. url: https://github.com/coin-or/Cbc.

[CCR07] Jordi Cabot, Robert Clarisó, and Daniel Riera. “UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming”. In: ASE. ACM, 2007, pp. 547–548. doi:
10.1145/1321631.1321737.

[CCR08] J. Cabot, R. Clariso, and D. Riera. “Verification of UML/OCL Class Diagrams using Constraint
Programming”. In: ICSTW. 2008, pp. 73–80.

[CCR14] Jordi Cabot, Robert Clarisó, and Daniel Riera. “On the verification of UML/OCL class dia-
grams using constraint programming”. In: J. Syst. Softw. 93 (2014), pp. 1–23. doi: 10.1016/j.
jss.2014.03.023.

[CET18] Vittorio Cortellessa, Romina Eramo, and Michele Tucci. “Availability-Driven Architectural
Change Propagation Through Bidirectional Model Transformations Between UML and Petri
Net Models”. In: ICSA. IEEE, 2018. doi: 10.1109/ICSA.2018.00022.

[CET20] Vittorio Cortellessa, Romina Eramo, and Michele Tucci. “From software architecture to
analysis models and back: Model-driven refactoring aimed at availability improvement”. In:
Inf. Softw. Technol. 127 (2020), p. 106362. doi: 10.1016/j.infsof.2020.106362.

[CGC19] Robert Clarisó, Carlos A. González, and Jordi Cabot. “Smart Bound Selection for the Verifi-
cation of UML/OCL Class Diagrams”. In: IEEE Trans. Softw. Eng. 45.4 (2019), pp. 412–426.
doi: 10.1109/TSE.2017.2777830.

[CH06] K. Czarnecki and S. Helsen. “Feature-based survey of model transformation approaches”. In:
IBM Syst. J. 45.3 (2006), pp. 621–645. doi: 10.1147/sj.453.0621.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear restraints among
variables of a program”. In: POPL. ACM, 1978, pp. 84–96. doi: 10.1145/512760.512770.

[Che+11a] Taolue Chen et al. “Model Checking of Continuous-Time Markov Chains Against Timed
Automata Specifications”. In: Log. Method. Comput. Sci. 7.1 (2011). doi: 10.2168/LMCS-7(1:
12)2011.

[Che+11b] Betty H. C. Cheng et al. “Using Models at Runtime to Address Assurance for Self-Adaptive
Systems”. In: Models@run.time. LNCS 8378. Springer, 2011, pp. 101–136. doi: 10.1007/978-
3-319-08915-7_4.

[Cic+10] Antonio Cicchetti et al. “JTL: A Bidirectional and Change Propagating Transformation
Language”. In: SLE 2010. Springer, 2010, pp. 183–202. doi: 10.1007/978-3-642-19440-5_11.

136

https://doi.org/10.1007/s10270-021-00914-w
https://doi.org/10.1145/3270112.3270130
https://doi.org/10.1145/3270112.3270130
https://doi.org/10.1007/11561347_28
https://doi.org/10.1145/2330667.2330686
https://doi.org/10.1007/978-3-319-66335-7\_20
https://github.com/coin-or/Cbc
https://doi.org/10.1145/1321631.1321737
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1109/TSE.2017.2777830
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1145/512760.512770
https://doi.org/10.2168/LMCS-7(1:12)2011
https://doi.org/10.2168/LMCS-7(1:12)2011
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-642-19440-5_11


References

[CJ11] Duc Hiep Chu and Joxan Jaffar. “Symbolic simulation on complicated loops for WCET path
analysis”. In: Proc. of the 9th ACM International Conference on Embedded Software. IEEE, 2011,
pp. 319–328. doi: 10.1145/2038642.2038692.

[CK96] Kong-Rim Choi and Kyung-Chang Kim. “T*-tree: a main memory database index structure
for real time applications”. In: 3rd International Workshop on Real-Time Computing Systems
and Applications. IEEE, 1996, pp. 81–88. doi: 10.1109/RTCSA.1996.554964.

[Clp] COIN-OR. Clp. url: https://github.com/coin-or/Clp.

[CMP15] Vittorio Cortellessa, Raffaela Mirandola, and Pasqualina Potena. “Managing the evolution of
a software architecture at minimal cost under performance and reliability constraints”. In:
Sci. Comput. Program. 98 (2015), pp. 439–463. doi: 10.1016/j.scico.2014.06.001.

[CNS12] Marsha Chechik, Shiva Nejati, and Mehrad Sabetzadeh. “A relationship-based approach to
model integration”. In: Innov. Syst. Softw. Eng. 8.1 (2012), pp. 3–18. doi: 10.1007/s11334-
011-0155-2.

[CS06] Hugues Cassé and Pascal Sainrat. “OTAWA, a framework for experimenting WCET compu-
tations”. In: 3rd European Congress on Embedded Real-Time. 2006, pp. 1–8.

[CT93] Gianfranco Ciardo and Kishor S. Trivedi. “A decomposition approach for stochastic reward
net models”. In: Perform. Eval. 18.1 (1993), pp. 37–59. doi: 10.1016/0166-5316(93)90026-Q.

[Cuc+12] L. Cucu-Grosjean et al. “Measurement-Based Probabilistic Timing Analysis for Multi-path
Programs”. In: 2012 24th Euromicro Conference on Real-Time Systems. 2012, pp. 91–101. doi:
10.1109/ECRTS.2012.31.

[DBB18] Wei Dou, Domenico Bianculli, and Lionel Briand. “Model-Driven Trace Diagnostics for
Pattern-Based Temporal Specifications”. In: 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. ACM, 2018, pp. 278–288. doi: 10.1145/
3239372.3239396.

[Deb+14] Csaba Debreceni et al. “Query-driven incremental synchronization of view models”. In: VAO
’14. ACM, 2014, pp. 31–38. doi: 10.1145/2631675.2631677.

[DGC14] Juan De Lara, Ester Guerra, and Jesús Sánchez Cuadrano. “When and How to Use Multilevel
Modelling”. In: 24.2 (2014), pp. 1–46. doi: 10.1145/2685615.

[DHS09] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. “Model Checking Timed and
Stochastic Properties with CSLTA”. In: IEEE Tran. Softw. Eng. 35.2 (2009), pp. 224–240. doi:
10.1109/TSE.2008.108.

[DLL62] Martin Davis, George Logemann, and Davis Loveland. “A machine program for theorem-
proving”. In: C. ACM 5.7 (1962), pp. 394–397. doi: 10.1145/368273.368557.

[Dru00] Doron Drusinsky. “The temporal rover and the ATG rover”. In: SPIN Model Checking and
Software Verification. LNCS 1885. 2000, pp. 323–330. doi: 10.1007/10722468_19.

[DXC11] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. “Specifying Overlaps of Heteroge-
neous Models for Global Consistency Checking”. In: MODELS 2010. Springer, 2011, pp. 165–
179. doi: 10.1007/978-3-642-21210-9_16.

[Edu+18] Sergey Edunov et al. “Generating Synthetic Social Graphs with Darwini”. In: ICDCS. IEEE,
2018, pp. 567–577. doi: 10.1109/ICDCS.2018.00062.

[Ehr+06] H. Ehrig et al. Fundamentals of Algebraic Graph Transformation. Springer, 2006. isbn: 978-3-
540-31187-4. doi: 10.1007/3-540-31188-2.

[Ehr+99] H. Ehrig et al., eds. Handbook of Graph Grammars and Computing by Graph Transformation.
Vol. 1. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 1999, pp. 163–246.

[Eme11] Daniel Emery. “Headways on high speed lines”. In: 9th World Congress on Railway Research.
2011, pp. 22–26.

[Eng+97] Gregor Engels et al. “A Combined Reference Model- and View-Based Approach to System
Specification”. In: Int. J. Softw. Eng. Knowl. Eng. 7.4 (1997), pp. 457–477. doi: 10.1142/
S0218194097000266.

137

https://doi.org/10.1145/2038642.2038692
https://doi.org/10.1109/RTCSA.1996.554964
https://github.com/coin-or/Clp
https://doi.org/10.1016/j.scico.2014.06.001
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1016/0166-5316(93)90026-Q
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.1145/3239372.3239396
https://doi.org/10.1145/3239372.3239396
https://doi.org/10.1145/2631675.2631677
https://doi.org/10.1145/2685615
https://doi.org/10.1109/TSE.2008.108
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1109/ICDCS.2018.00062
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1142/S0218194097000266
https://doi.org/10.1142/S0218194097000266


References

[ENS10] Brandon K. Eames, Sandeep Neema, and Rohit Saraswat. “DesertFD: a finite-domain con-
straint based tool for design space exploration”. In: Des. Autom. Embed. Syst. 14.2 (2010),
pp. 43–74. doi: 10.1007/s10617-009-9049-z.

[Epi+09] Ilenia Epifani et al. “Model evolution by run-time parameter adaptation”. In: ICSE. IEEE,
2009, pp. 111–121. doi: 10.1109/ICSE.2009.5070513.

[Erm+07] Andreas Ermedahl et al. “Loop bound analysis based on a combination of program slicing,
abstract interpretation, and invariant analysis”. In: 7th International Workshop on Worst-Case
Execution Time Analysis (WCET’07). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[ES03] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”. In: ICTAST. Springer. 2003,
pp. 502–518.

[Fam+13] Michalis Famelis et al. “Transformation of models containing uncertainty”. In: MODELS.
Springer. 2013, pp. 673–689.

[FB16] Simon Fürst and Markus Bechter. “AUTOSAR for Connected and Autonomous Vehicles:
The AUTOSAR Adaptive Platform”. In: DSN-W. IEEE, 2016. doi: 10.1109/DSN-W.2016.24.

[FD16] Peter Feiler and Julien Delange. “Automated Fault Tree Analysis from ADL Models”. In:
ACM SIGAda Ada Letters 36.2 (2016), pp. 39–46. doi: 10.1145/3092893.3092900.

[Fel03] Massimo Felici. “Taxonomy of evolution and dependability”. In: Proc. 2ndWorkshop Unanticip.
Softw. Evol. 2003, pp. 95–104.

[FFJ12] Pietro Ferrara, Rafael Fuchs, and Uri Juhasz. “TVAL+: TVLA and value analyses together”.
In: SEFM. ACM, 2012, pp. 63–77. doi: 10.1007/978-3-642-33826-7_5.

[FH04] Christian Ferdinand and Reinhold Heckmann. “aiT: Worst-Case Execution Time Prediction
by Static Program Analysis”. In: Building the Information Society. IFIPAICT 156. Springer,
2004, pp. 377–383. doi: 10.1007/978-1-4020-8157-6_29.

[Fis+98] Thorsten Fischer et al. “Story diagrams: A new graph rewrite language based on the unified
modeling language and java”. In: International Workshop on Theory and Application of Graph
Transformations. Springer. 1998, pp. 296–309. doi: 10.1007/978-3-540-46464-8_21.

[FSC12] Michais Famelis, Rick Salay, and Marsha Chechik. “Partial models: Towards modeling and
reasoning with uncertainty”. In: ICSE ’12. IEEE, 2012. doi: 10.1109/ICSE.2012.6227159.

[FTW16] Martin Fleck, Javier Troya, and Manuel Wimmer. “Search-Based Model Transformations
with MOMoT”. In: ICMT@STAF. LNCS 9765. Springer, 2016, pp. 79–87. doi: 10.1007/978-3-
319-42064-6\_6.

[Gal06] Brian Gallagher. “Matching structure and semantics: A survey on graph-based pattern
matching”. In: AAAI FS 6 (2006), pp. 45–53.

[GBR05] Martin Gogolla, Jörn Bohling, and Mark Richters. “Validating UML and OCL models in USE
by automatic snapshot generation”. In: Softw. Syst. Model. 4 (2005), pp. 386–398.

[GDM14] Hamid Gholizadeh, Zinovy Diskin, and Tom Maibaum. “A Query Structured Approach for
Model Transformation”. In: Workshop on Analysis of Model Transformations. Vol. 1277. CEUR
Workshop Proceedings. CEUR-WS.org, 2014, pp. 54–63. url: http://ceur-ws.org/Vol-
1277/6.pdf.

[Get+18] Sinem Getir et al. “Supporting semi-automatic co-evolution of architecture and fault tree
models”. In: J. Syst. Softw. 142 (2018), pp. 115–135. doi: 10.1016/j.jss.2018.04.001.

[Gha+17] Majdi Ghadhab et al. “Model-Based Safety Analysis for Vehicle Guidance Systems”. In:
SAFECOMP. Springer, 2017, pp. 3–19. doi: 10.1007/978-3-319-66266-4_1.

[GHL14] Holger Giese, Stephan Hildebrandt, and Leen Lambers. “Bridging the gap between formal
semantics and implementation of triple graph grammars”. In: Softw. Syst. Model. 13.1 (2014),
pp. 273–299. doi: 10.1007/s10270-012-0247-y.

[Gie+03] Holger Giese et al. “Towards the compositional verification of real-time UML designs”. In:
ACM SIGSOFT Symposium on the Foundations of Software Engineering. 2003, pp. 38–47. doi:
10.1145/940071.940078.

138

https://doi.org/10.1007/s10617-009-9049-z
https://doi.org/10.1109/ICSE.2009.5070513
https://doi.org/10.1109/DSN-W.2016.24
https://doi.org/10.1145/3092893.3092900
https://doi.org/10.1007/978-3-642-33826-7_5
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1109/ICSE.2012.6227159
https://doi.org/10.1007/978-3-319-42064-6\_6
https://doi.org/10.1007/978-3-319-42064-6\_6
http://ceur-ws.org/Vol-1277/6.pdf
http://ceur-ws.org/Vol-1277/6.pdf
https://doi.org/10.1016/j.jss.2018.04.001
https://doi.org/10.1007/978-3-319-66266-4_1
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1145/940071.940078


References

[Gil+10] Stephen Gilmore et al. “Non-functional properties in the model-driven development of
service-oriented systems”. In: Software & Systems Modeling 10.3 (2010), pp. 287–311. issn:
1619-1366. doi: 10.1007/s10270-010-0155-y.

[GK07] Joel Greenyer and Ekkart Kindler. “Reconciling TGGs with QVT”. In:MODELS 2007. Springer,
2007, pp. 16–30. doi: 10.1007/978-3-540-75209-7_2.

[Gon+12] Carlos A. González et al. “EMFtoCSP: a tool for the lightweight verification of EMF models”.
In: FormSERA. 2012, pp. 44–50. doi: 10.1109/FormSERA.2012.6229788.

[Gop+04] Denis Gopan et al. “Numeric Domains with Summarized Dimensions”. In: TACAS 2004.
Vol. 2988. LNCS. Springer, 2004, pp. 512–529. doi: 10.1007/978-3-540-24730-2_38.

[Gre06] Joel Greenyer. “A study of technologies for model transformation: Reconciling TGGs with
QVT”. Diplomarbeit. Universität Paderborn, 2006.

[GRR09] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. “System Model-Based Definition
of Modeling Language Semantics”. In: FORTE. Vol. 5522. LNCS. Springer, 2009, pp. 152–166.

[GTC15] Simos Gerasimou, Giordano Tamburrelli, and Radu Calinescu. “Search-Based Synthesis of
Probabilistic Models for Quality-of-Service Software Engineering”. In: ASE. IEEE, 2015. doi:
10.1109/ASE.2015.22.

[Gus+06] Jan Gustafsson et al. “Automatic derivation of loop bounds and infeasible paths for WCET
analysis using abstract execution”. In: Proc. of Real-Time Systems Symposium. 2006, pp. 57–66.
doi: 10.1109/RTSS.2006.12.

[Hal18] Terry A. Halpin. “Object-RoleModeling”. In: Encyclopedia of Database Systems, Second Edition.
Ed. by Ling Liu and M. Tamer Özsu. Springer, 2018. doi: 10.1007/978-1-4614-8265-9\_251.

[Har+19] Thomas Hartmann et al. “GREYCAT: Efficient what-if analytics for data in motion at scale”.
In: Information Systems 83 (2019), pp. 101–117.

[Hav15] Klaus Havelund. “Rule-based runtime verification revisited”. In: Int. J. Software Tools Technol.
Trans. 17.2 (2015), pp. 143–170. doi: 10.1007/s10009-014-0309-2.

[Heg+16] Ábel Hegedüs et al. “Query-driven soft traceability links for models”. In: Softw. Syst. Model.
15.3 (2016), pp. 733–756. doi: 10.1007/s10270-014-0436-y.

[Her+17] Sebastian J. I. Herzig et al. “Model-transformation-based computational design synthesis
for mission architecture optimization”. In: IEEE Aerospace Conference. IEEE, 2017. doi: 10.
1109/AERO.2017.7943953.

[HHM09] Jeffery Hansen, Scott Hissam, and Gabriel A Moreno. “Statistical-based wcet estimation and
validation”. In: 9th International Workshop on Worst-Case Execution Time Analysis. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2009.

[HHV15] Ábel Hegedüs, Ákos Horváth, and Dániel Varró. “A model-driven framework for guided
design space exploration”. In:Autom. Softw. Eng. 22 (2015), pp. 399–436. doi: 10.1007/s10515-
014-0163-1.

[Hid+11] Soichiro Hidaka et al. “GRoundTram: An integrated framework for developing well-behaved
bidirectional model transformations”. In: ASE 2011. IEEE, 2011. doi: 10.1109/ASE.2011.
6100104.

[Hil16] Nicolas Hili. “A Metamodeling Framework for Promoting Flexibility and Creativity Over
Strict Model Conformance”. In: FlexMDE@MODELS. Vol. 1694. CEURWorkshop Proceedings.
CEUR-WS.org, 2016, pp. 2–11. url: http://ceur-ws.org/Vol-1694/FlexMDE2016%5C_
paper%5C_6.pdf.

[HLR06] David Hearnden, Michael Lawley, and Kerry Raymond. “Incremental Model Transformation
for the Evolution of Model-Driven Systems”. In: MODELS 2006. Springer, 2006, pp. 321–335.
doi: 10.1007/11880240_23.

[HM19] Dávid Honfi and Zoltán Micskei. “Classifying generated white-box tests: an exploratory
study”. In: Softw. Qual. J. 27 (2019), pp. 1339–1380. doi: 10.1007/s11219-019-09446-5.

139

https://doi.org/10.1007/s10270-010-0155-y
https://doi.org/10.1007/978-3-540-75209-7_2
https://doi.org/10.1109/FormSERA.2012.6229788
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1109/ASE.2015.22
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1007/978-1-4614-8265-9\_251
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/s10270-014-0436-y
https://doi.org/10.1109/AERO.2017.7943953
https://doi.org/10.1109/AERO.2017.7943953
https://doi.org/10.1007/s10515-014-0163-1
https://doi.org/10.1007/s10515-014-0163-1
https://doi.org/10.1109/ASE.2011.6100104
https://doi.org/10.1109/ASE.2011.6100104
http://ceur-ws.org/Vol-1694/FlexMDE2016%5C_paper%5C_6.pdf
http://ceur-ws.org/Vol-1694/FlexMDE2016%5C_paper%5C_6.pdf
https://doi.org/10.1007/11880240_23
https://doi.org/10.1007/s11219-019-09446-5


References

[Hoa+17] Xuan-Luu Hoang et al. “Generation and impact analysis of adaptation options for automated
manufacturing machines”. In: 22nd IEEE Int. Conf. Emerg. Technol. Fact. Autom. IEEE, 2017.
doi: 10.1109/ETFA.2017.8247572.

[HOT89] Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeo K. Taneja. “Processing Aggregate Relational
Queries with Hard Time Constraints”. In: ACM SIGMOD Rec. 18.2 (1989), pp. 68–77. doi:
10.1145/66926.66933.

[HR02] Klaus Havelund and Grigore Rosu. “Synthesizing Monitors for Safety Properties”. In: Tools
and Algorithms for the Construction and Analysis of Systems. LNCS 2280. 2002, pp. 342–356.
doi: 10.1007/3-540-46002-0_24.

[HR09] Jörg Herter and Jan Reineke. “Making Dynamic Memory Allocation Static to Support WCET
Analysis”. In: 9th International Workshop on Worst-Case Execution Time Analysis. 2009.

[HS17] Nicolas Hili and Jean-Sébastien Sottet. “The Conformance Relation Challenge: Building Flexi-
ble Modelling Frameworks”. In: FlexMDE@MODELS. Vol. 2019. CEURWorkshop Proceedings.
CEUR-WS.org, 2017, pp. 418–423. url: http://ceur-ws.org/Vol-2019/flexmde%5C_6.pdf.

[HT16] Sochiro Hidaka and Massimo Tisi. Partial Bidirectionalization of Model Transformation
Languages. Tech. rep. 2016. url: https://hidaka.cis.k.hosei.ac.jp/research/papers/
scp2016.pdf.

[Iqb+15] Muhammad Zohaib Iqbal et al. “Applying UML/MARTE on industrial projects: challenges,
experiences, and guidelines”. In: Softw. Syst. Model. 14.4 (2015), pp. 1367–1385. doi: 10.1007/
s10270-014-0405-5.

[IW17] M. Usman Iftikhar andDannyWeyns. “ActivFORMS: ARuntime Environment for Architecture-
Based Adaptation with Guarantees”. In: ICSAW. IEEE, 2017. doi: 10.1109/ICSAW.2017.21.

[Jac02] Daniel Jackson. “Alloy: a lightweight object modelling notation”. In: ACM Trans. Softw. Eng.
Methodol. 11.2 (2002), pp. 256–290. doi: 10.1145/505145.505149.

[JDR17] Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. “Self-awareness in systems on chip – A
survey”. In: IEEE Design & Test 34.6 (2017), pp. 8–26.

[JGS13] Ethan K. Jackson, Simko Gabor, and Janos Sztipanovits. Diversely Enumerating System-Level
Architectures. Tech. rep. MSR-TR-2013-56. 2013.

[JKS06] Johannes Jakob, Alexander Königs, and Andy Schürr. “Non-materialized Model View Spec-
ification with Triple Graph Grammars”. In: ICGT 2006. Springer, 2006, pp. 321–355. doi:
10.1007/11841883_23.

[JLB11] Ethan K Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. “Reasoning about
metamodeling with formal specifications and automatic proofs”. In:MODELS. Springer, 2011,
pp. 653–667.

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical Abstract Domains for
Static Analysis”. In: CAV. LNTCS 5643. Springer, 2009, pp. 661–667. doi: 10.1007/978-3-
642-02658-4_52.

[JN16] Manfred A. Jeusfeld and Bernd Neumayr. “DeepTelos: Multi-level Modeling with Most
General Instances”. In: ER. Vol. 9974. LNCS. 2016, pp. 198–211. doi: 10.1007/978-3-319-
46397-1\_15.

[Joh+19] Stefan John et al. “Searching for Optimal Models: Comparing Two Encoding Approaches”.
In: J. Object Technol. 18.3 (2019), 6:1–22. doi: 10.5381/jot.2019.18.3.a6.

[Jou+08] Frédéric Jouault et al. “ATL: A Model Transformation Tool”. In: Sci. Comput. Program. 72.1-2
(2008), pp. 31–39. doi: 10.1016/j.scico.2007.08.002.

[JS06] Ethan K. Jackson and Janos Sztipanovits. “Towards a Formal Foundation for Domain Specific
Modeling Languages”. In: EMSOFT. Seoul, Korea: ACM, 2006, pp. 53–62.

[JS07] Ethan K Jackson and Janos Sztipanovits. “Constructive techniques for meta- and model-level
reasoning”. In: MODELS. Springer, 2007, pp. 405–419.

[JSS13] Ethan K. Jackson, Gabor Simko, and Janos Sztipanovits. “Diversely enumerating system-level
architectures”. In: ACM International Conference on Embedded Software. IEEE, 2013.

140

https://doi.org/10.1109/ETFA.2017.8247572
https://doi.org/10.1145/66926.66933
https://doi.org/10.1007/3-540-46002-0_24
http://ceur-ws.org/Vol-2019/flexmde%5C_6.pdf
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
https://doi.org/10.1007/s10270-014-0405-5
https://doi.org/10.1007/s10270-014-0405-5
https://doi.org/10.1109/ICSAW.2017.21
https://doi.org/10.1145/505145.505149
https://doi.org/10.1007/11841883_23
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-319-46397-1\_15
https://doi.org/10.1007/978-3-319-46397-1\_15
https://doi.org/10.5381/jot.2019.18.3.a6
https://doi.org/10.1016/j.scico.2007.08.002


References

[JT10] Frédéric Jouault and Massimo Tisi. “Towards Incremental Execution of ATL Transforma-
tions”. In: ICMT 2010. Springer, 2010, pp. 123–137. doi: 10.1007/978-3-642-13688-7_9.

[Jür03] Jan Jürjens. “Developing safety-critical systems with UML”. In: LNCS 2863. 2003, pp. 360–372.
doi: 10.1007/978-3-540-45221-8_31.

[JVB17] Anjali Joshi, Steve Vestal, and Pam Binns. “Automatic generation of static fault trees from
AADL models”. In: DSN Workshops. Springer, 2017.

[Kat+16] Guy Katz et al. “Lazy proofs for DPLL(T)-based SMT solvers”. In: FMCAD. IEEE, 2016, pp. 93–
100. doi: 10.1109/FMCAD.2016.7886666.

[KB09] Heiko Koziolek and Franz Brosch. “Parameter Dependencies for Component Reliability
Specifications”. In: Elec. Note. Theor. Comput. Sci. 253 (1 2009), pp. 23–38. doi: 10.1016/j.
entcs.2009.09.026.

[Ker+13] Aleksandr A Kerzhner et al. “Architecting cellularized space systems using model-based
design exploration”. In: AIAA SPACE 2013 Conference and Exposition. 2013, p. 5371.

[KHG11] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. “Extensive Validation of OCL Models
by Integrating SAT Solving into USE”. In: TOOLS. Vol. 6705. LNCS. 2011, pp. 290–306.

[KJS10] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. “An Approach for Effective Design
Space Exploration”. In: Monterey Workshop. Vol. 6662. LNCS. Springer, 2010, pp. 33–54. doi:
10.1007/978-3-642-21292-5_3.

[KK06] Barbara König and Vitali Kozioura. “Counterexample-Guided Abstraction Refinement for
the Analysis of Graph Transformation Systems”. In: TACAS. Vol. 3920. LNCS. Springer, 2006,
pp. 197–211. doi: 10.1007/11691372_13.

[KK08] Barbara König and Vitali Kozioura. “Augur 2 – A New Version of a Tool for the Analysis of
Graph Transformation Systems”. In: Electr. Notes Theor. Comput. Sci. 211 (2008). GT-VMT
2006, pp. 201–210.

[KKZ13] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. “WCET squeezing”. In: International
Conference on Real-Time Networks and Systems. ACM, 2013, pp. 161–170. doi: 10.1145/
2516821.2516847.

[KM04] Sarfraz Khurshid and DarkoMarinov. “TestEra: Specification-Based Testing of Java Programs
Using SAT”. In: Autom. Softw. Eng. 11.4 (2004), pp. 403–434.

[KO17] Norihiro Kamide and Hitoshi Omori. “An Extended First-Order Belnap-Dunn Logic with
Classical Negation”. In: LORI. Springer, 2017, pp. 79–93. doi: 10.1007/978-3-662-55665-
8_6.

[Kol+13] Dimitrios S. Kolovos et al. “Programmatic MuddleManagement”. In: XM@MODELS. Vol. 1089.
CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 2–10. url: http://ceur-ws.org/
Vol-1089/1.pdf.

[Koz10] Heiko Koziolek. “Performance evaluation of component-based software systems: A survey”.
In: Perform. Eval. 67.8 (2010), pp. 634–658. doi: 10.1016/j.peva.2009.07.007.

[Koz16] V. P. Kozyrev. “Estimation of the execution time in real-time systems”. In: Programming and
Computer Software 42.1 (2016), pp. 41–48. doi: 10.1134/S0361768816010059.

[KP09] Ekkart Kindler and Laure Petrucci. “Towards a Standard for Modular Petri Nets: A Formali-
sation”. In: PETRI NETS. 2009, pp. 43–62. doi: 10.1007/978-3-642-02424-5_5.

[KPP] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. “The Epsilon Transformation
Language”. In: ICMT 2008. Springer, pp. 46–60. doi: 10.1007/978-3-540-69927-9_4.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. “Merging Models with the
Epsilon Merging Language (EML)”. In: Springer, 2006, pp. 215–229. doi: 10.1007/11880240_
16.

[KR08] Heiko Koziolek and Ralf Reussner. “A Model Transformation from the Palladio Component
Model to Layered Queueing Networks”. In: (2008), pp. 58–57. doi: 10.1007/978-3-540-
69814-2_6.

141

https://doi.org/10.1007/978-3-642-13688-7_9
https://doi.org/10.1007/978-3-540-45221-8_31
https://doi.org/10.1109/FMCAD.2016.7886666
https://doi.org/10.1016/j.entcs.2009.09.026
https://doi.org/10.1016/j.entcs.2009.09.026
https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1007/11691372_13
https://doi.org/10.1145/2516821.2516847
https://doi.org/10.1145/2516821.2516847
https://doi.org/10.1007/978-3-662-55665-8_6
https://doi.org/10.1007/978-3-662-55665-8_6
http://ceur-ws.org/Vol-1089/1.pdf
http://ceur-ws.org/Vol-1089/1.pdf
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1134/S0361768816010059
https://doi.org/10.1007/978-3-642-02424-5_5
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/11880240_16
https://doi.org/10.1007/11880240_16
https://doi.org/10.1007/978-3-540-69814-2_6
https://doi.org/10.1007/978-3-540-69814-2_6


References

[KR11] Anne Koziolek and Ralf Reussner. “Towards a generic quality optimisation framework for
component-based systemmodels”. In: CBSE. ACM, 2011, pp. 103–108. doi: 10.1145/2000229.
2000244.

[KS07] Thomas Kühne and Daniel Schreiber. “Can programming be liberated from the two-level
style: multi-level programming with deepjava”. In: OOPSLA. ACM, 2007, pp. 229–244. doi:
10.1145/1297027.1297044.

[KSH12] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. “A Description Logic Primer”. In:
CoRR abs/1201.4089 (2012). arXiv: 1201.4089.

[Küh+10] Thomas Kühne et al. “Explicit Transformation Modeling”. In: MODELS 2009. Springer, 2010,
pp. 240–255. doi: 10.1007/978-3-642-12261-3_23.

[Küh18] Thomas Kühne. “Exploring Potency”. In: MODELS. ACM, 2018, pp. 2–12. doi: 10.1145/
3239372.3239411.

[Kul09] Ulrich W. Kulisch. “Complete Interval Arithmetic and Its Implementation of the Computer”.
In: Numerical Validation in Current Hardware Architectures. LNCS. Springer, 2009, pp. 7–26.
doi: 10.1007/978-3-642-01591-5_2.

[KZH16] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. “BiGUL: a formally verified core language
for putback-based bidirectional programming”. In: PEPM ’16. ACM, 2016, pp. 61–72. doi:
10.1145/2847538.2847544.

[Lau+12] Marius Lauder et al. “Bidirectional Model Transformation with Precedence Triple Graph
Grammars”. In: ECMFA 2012. Springer, 2012, pp. 287–303. doi: 10.1007/978-3-642-31491-
9_22.

[LB16] S. Law and I. Bate. “Achieving Appropriate Test Coverage for Reliable Measurement-Based
Timing Analysis”. In: 2016 28th Euromicro Conference on Real-Time Systems (ECRTS). 2016,
pp. 189–199. doi: 10.1109/ECRTS.2016.21.

[Leb+17] Erhan Leblebici et al. “Leveraging Incremental Pattern Matching Techniques for Model
Synchronisation”. In: ICGT 2017. Springer, 2017, pp. 179–195. doi: 10.1007/978-3-319-
61470-0_11.

[Lev06] Tihamér Levendovszky. “Applying metamodels in software model transformation methods”.
PhD thesis. Budapest University of Technology and Economics, 2006.

[LG10] Juan de Lara and Esther Guerra. “Deep Meta-modelling with MetaDepth”. In: TOOLS.
Vol. 6141. LNCS. Springer, 2010, pp. 1–20. doi: 10.1007/978-3-642-13953-6\_1.

[Li+07] Xianfeng Li et al. “Chronos: A timing analyzer for embedded software”. In: Science of
Computer Programming 69.1-3 (2007), pp. 56–67.

[Li+11] Rui Li et al. “An evolutionary multiobjective optimization approach to component-based
software architecture design”. In: IEEE CEC. IEEE, 2011, pp. 432–439. doi: 10.1109/CEC.
2011.5949650.

[Li+14] Yi Li et al. “Symbolic optimization with SMT solvers”. In: POPL. ACM, 2014, pp. 607–618.
doi: 10.1145/2535838.2535857.

[Li+19] Xiaocui Li et al. “Aggregated multi-attribute query processing in edge computing for in-
dustrial IoT applications”. In: Computer Networks 151 (2019), pp. 114–123. doi: 10.1016/j.
comnet.2019.01.022.

[Lia+15] Jia Hui (Jimmy) Liang et al. “SAT-based analysis of large real-world feature models is easy”.
In: SPLC. ACM, 2015, pp. 91–100. doi: 10.1145/2791060.2791070.

[Lie+14] Grischa Liebel et al. “Assessing the State-of-Practice of Model-Based Engineering in the
Embedded Systems Domain”. In:MODELS 2014. Vol. 8767. LNCS. Springer, 2014, pp. 166–182.
doi: 10.1007/978-3-319-11653-2_11.

[Lim+95] Sung-Soo Lim et al. “An accurate worst case timing analysis for RISC processors”. In: IEEE
Transactions on Software Engineering 21.7 (1995), pp. 593–604.

142

https://doi.org/10.1145/2000229.2000244
https://doi.org/10.1145/2000229.2000244
https://doi.org/10.1145/1297027.1297044
https://arxiv.org/abs/1201.4089
https://doi.org/10.1007/978-3-642-12261-3_23
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1007/978-3-642-01591-5_2
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1007/978-3-642-31491-9_22
https://doi.org/10.1007/978-3-642-31491-9_22
https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-642-13953-6\_1
https://doi.org/10.1109/CEC.2011.5949650
https://doi.org/10.1109/CEC.2011.5949650
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1016/j.comnet.2019.01.022
https://doi.org/10.1016/j.comnet.2019.01.022
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1007/978-3-319-11653-2_11


References

[Lis14] Björn Lisper. “SWEET – a tool for WCET flow analysis”. In: International Symposium On
Leveraging Applications of FormalMethods, Verification and Validation. Springer. 2014, pp. 482–
485.

[LLC05] Tihamér Levendovszky, László Lengyel, and Hassan Charaf. “A UML class diagram-based
pattern language for model transformation systems”. In: SEPADS. ACM, 2005. doi: 10.5555/
1365774.1365793.

[LM97] Y.-T.S. Li and Sharad Malik. “Performance analysis of embedded software using implicit
path enumeration”. In: IEEE T. Comput. Aid. D. 16.12 (1997), pp. 1477–1487. doi: 10.1109/
43.664229.

[LMC04] Juan Pablo López-Grao, José Merseguer, and Javier Campos. “From UML activity diagrams
to Stochastic Petri nets: application to software performance engineering”. In: WOSP. ACM,
2004, pp. 25–36. doi: 10.1145/974043.974048.

[LP10] Daniel Le Berre and Anne Parrain. “The Sat4j library, release 2.2”. In: J. Satisfiability Boolean
Model. Comput. 7 (2010), pp. 59–64.

[Mag+07] Stephen Magill et al. “Arithmetic Strengthening for Shape Analysis”. In: SAS. Vol. 4634.
LNCS. Springer, 2007, pp. 419–436. doi: 10.1007/978-3-540-74061-2_26.

[Mai+17] Claire Maiza et al. “The W-SEPT Project: Towards Semantic-Aware WCET Estimation”. In:
17th InternationalWorkshop onWorst-Case Execution Time Analysis (WCET 2017). Vol. 57. Ope-
nAccess Series in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2017. doi: 10.4230/OASIcs.WCET.2017.9.

[Mar+10] Anne Martens et al. “Automatically improve software architecture models for performance,
reliability, and cost using evolutionary algorithms”. In: Proc. 1st Joint WOSP/SIPEW Int. Conf.
Perf. Eng. ACM, 2010, pp. 105–116. doi: 10.1145/1712605.1712624.

[Mar+98] Florian Martin et al. “Analysis of loops”. In: Lecture Notes in Computer Science 1383 (1998),
pp. 80–94. issn: 16113349.

[MB01] I. Mura and A. Bondavalli. “Markov Regenerative Stochastic Petri Nets to Model and Evaluate
Phased Mission Systems Dependability”. In: IEEE Comput. 50.12 (2001), pp. 1337–1351. doi:
10.1109/TC.2001.970572.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: TACAS. Vol. 4963.
LNCS. Springer, 2008, pp. 337–340.

[MB15] Alexis Marechal and Didier Buchs. “Generalizing the Compositions of Petri Nets Modules”.
In: Fundam. Inform. 137.1 (2015), pp. 87–116. doi: 10.3233/FI-2015-1171.

[MB99] I. Mura andA. Bondavalli. “Hierarchical modeling and evaluation of phased-mission systems”.
In: IEEE Tran. Reliability 48.4 (1999), pp. 360–368. doi: 10.1109/24.814518.

[MCB84] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. “A class of generalized stochas-
tic Petri nets for the performance evaluation of multiprocessor systems”. In: ACM Trans.
Comput. Syst. 2.2 (1984). doi: 10.1145/190.191.

[MCH16] David Mosteller, Lawrence Cabac, and Michael Haustermann. “Integrating Petri Net Se-
mantics in a Model-Driven Approach: The Renew Meta-Modeling and Transformation
Framework”. In: TOPNOC XI. Vol. 9930. LNCS. Springer, 2016, pp. 92–113. doi: 10.1007/978-
3-662-53401-4_5.

[Mel+05] Sergey Melnik et al. “Supporting executable mappings in model management”. In: SIGMOD
’05. ACM, 2005, pp. 167–178. doi: 10.1145/1066157.1066177.

[Men+17] Baoluo Meng et al. “Relational Constraint Solving in SMT”. In: CADE. Vol. 10395. LNCS.
Springer, 2017, pp. 148–165.

[Mey16] Bart Meyers. A Multi-Paradigm Modelling Approach to Design and Evolution of Domain-
Specific Modelling Languages. 2016. url: http://msdl.cs.mcgill.ca/people/bart/publ/
thesis.pdf.

[Mez+19] Gergely Mezei et al. “Towards Flexible, Rigorous Refinement in Metamodeling”. In:MODELS-
C. IEEE, 2019, pp. 455–459. doi: 10.1109/MODELS-C.2019.00073.

143

https://doi.org/10.5555/1365774.1365793
https://doi.org/10.5555/1365774.1365793
https://doi.org/10.1109/43.664229
https://doi.org/10.1109/43.664229
https://doi.org/10.1145/974043.974048
https://doi.org/10.1007/978-3-540-74061-2_26
https://doi.org/10.4230/OASIcs.WCET.2017.9
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1109/TC.2001.970572
https://doi.org/10.3233/FI-2015-1171
https://doi.org/10.1109/24.814518
https://doi.org/10.1145/190.191
https://doi.org/10.1007/978-3-662-53401-4_5
https://doi.org/10.1007/978-3-662-53401-4_5
https://doi.org/10.1145/1066157.1066177
http://msdl.cs.mcgill.ca/people/bart/publ/thesis.pdf
http://msdl.cs.mcgill.ca/people/bart/publ/thesis.pdf
https://doi.org/10.1109/MODELS-C.2019.00073


References

[Mic+12] Zoltán Micskei et al. “A Concept for Testing Robustness and Safety of the Context-Aware
Behaviour of Autonomous Systems”. In: KES-AMSTA. Vol. 7327. LNCS. Springer, 2012,
pp. 504–513. doi: 10.1007/978-3-642-30947-2_55.

[Mil+07] Aleksandar Milicevic et al. “Korat: A Tool for Generating Structurally Complex Test Inputs”.
In: ICSE. 2007, pp. 771–774. doi: 10.1109/ICSE.2007.48.

[Mil+15] Aleksandar Milicevic et al. “Alloy*: A General-Purpose Higher-Order Relational Constraint
Solver”. In: ICSE. IEEE, 2015, pp. 609–619.

[Min04] Antoine Miné. “Weakly Relational Numerical Abstract Domains”. PhD thesis. École Normale
Supérieure, 2004.

[MOF] The Object Management Group. Object Constraint Language, v2.5.1. 2017. url: https://www.
omg.org/spec/MOF/2.5.1.

[MOG] The MOGENTES project. Model-based generation of tests for dependable embedded systems,
7th EU Framework Programme. 2011. url: http://mogentes.eu/.

[MPB02] István Majzik, András Pataricza, and Andrea Bondavalli. “Stochastic Dependability Analysis
of SystemArchitecture Based on UMLModels”. In:Architecting Dependable Systems. Springer,
2002, pp. 219–244. doi: 10.1007/3-540-45177-3_10.

[MRS10] Bill McCloskey, Thopas Reps, and Mooly Sagiv. “Statically Inferring Complex Heap, Array,
and Numeric Invariants”. In: SAS. Vol. 6337. LNCS. Springer, 2010, pp. 71–99. doi: 10.1007/
978-3-642-15769-1_6.

[MTD17] Salvador Martínez, Massimo Tisi, and Rémi Douence. “Reactive model transformation with
ATL”. In: Sci. Comp. Prog. 136 (2017), pp. 1–16. doi: 10.1016/J.SCICO.2016.08.006.

[MVS07] Panagiotis Manolios, Daron Vroon, and Gayatri Subramanian. “Automating component-
based system assembly”. In: ISSTA. ACM, 2007, pp. 61–72. doi: 10.1145/1273463.1273473.

[MW12] Maarten McKubre-Jordens and Zach Weber. “Real Analaysis in Paraconsistent Logic”. In: J.
Phil. Logic 41.5 (2012), pp. 901–922. doi: 10.1007/s10992-011-9210-6.

[MWC09] Marcıĺio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. “SAT-based analysis of
feature models is easy”. In: SPLC. ACM, 2009, pp. 231–240.

[Ndi+16] Moulaye Ndiaye et al. “Practical Use of Coloured Petri Nets for the Design and Performance
Assessment of Distributed Automation Architectures”. In: PNSE. CEUR-WS, 2016, pp. 113–
131. url: http://ceur-ws.org/Vol-1591/paper10.pdf.

[Nin15] Jordan Ninin. “Global Optimization Based on Contractor Programming: An Overview of the
IBEX Library”. In: MACIS. Vol. 9582. LNCS. Springer, 2015, pp. 555–559. doi: 10.1007/978-
3-319-32859-1\_47.

[NIST17] Cyber-Physical Systems Public Working Group. Framework for Cyber-Physical Systems:
Volume 1, Overview. NIST Special Publication 1500-201. National Institute of Standards and
Technology, 2017. doi: 10.6028/NIST.SP.1500-201.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. “The FUJABA environment”. In: ICSE. 2000,
pp. 742–745. doi: 10.1145/337180.337620.

[NO79] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision Procedures”. In:
ACM Trans. Program. Lang. Syst. 1.2 (1979), pp. 245–257. doi: 10.1145/357073.357079.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesar Tinelli. “Solving SAT and SAT Modulo
Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL() )”. In:
J. ACM 53.6 (2006), pp. 937–977. doi: 10.1145/1217856.1217859.

[OCL] The Object Management Group. Object Constraint Language, v2.4. 2014. url: https://www.
omg.org/spec/OCL/2.4.

[OS95] Gultekin Ozsoyoglu and Richard T. Snodgrass. “Temporal and real-time databases: A survey”.
In: IEEE Trans. Knowl. Data Eng. 7.4 (1995).

[Pek+20] Christian Pek et al. “Using online verification to prevent autonomous vehicles from causing
accidents”. In: Nature Machine Intelligence 2.9 (2020), pp. 518–528. doi: 10.1038/s42256-
020-0225-y.

144

https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1109/ICSE.2007.48
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/MOF/2.5.1
http://mogentes.eu/
https://doi.org/10.1007/3-540-45177-3_10
https://doi.org/10.1007/978-3-642-15769-1_6
https://doi.org/10.1007/978-3-642-15769-1_6
https://doi.org/10.1016/J.SCICO.2016.08.006
https://doi.org/10.1145/1273463.1273473
https://doi.org/10.1007/s10992-011-9210-6
http://ceur-ws.org/Vol-1591/paper10.pdf
https://doi.org/10.1007/978-3-319-32859-1\_47
https://doi.org/10.1007/978-3-319-32859-1\_47
https://doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/1217856.1217859
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
https://doi.org/10.1038/s42256-020-0225-y
https://doi.org/10.1038/s42256-020-0225-y


References

[Pen08] Karl-Heinz Pennemann. “Resolution-like theorem proving for high-level conditions”. In:
ICGT. Vol. 5214. LNCS. Springer, 2008, pp. 289–304.

[Pik+10] Lee Pike et al. “Copilot: A Hard Real-Time Runtime Monitor”. In: Runtime Verification.
Vol. 6418. 2010, pp. 345–359. doi: 10.1007/978-3-642-16612-9_26.

[PS97] Peter P. Puschner and Anton V. Schedl. “Computing Maximum Task Execution Times -
A Graph-Based Approach”. In: Real-Time Systems 13.1 (1997), pp. 67–91. doi: 10.1023/A:
1007905003094.

[Que+12] Anna Queralt et al. “OCL-Lite: Finite reasoning on UML/OCL conceptual schemas”. In: Data
Knowl. Eng. 73 (2012), pp. 1–22.

[QVT] Object Management Group. MOF Query/View/Transformation Specification. Version 1.3. 2016.
url: http://www.omg.org/spec/QVT/1.3/.

[RD06] Arend Rensink and Dino Distefano. “Abstract graph transformation”. In: Electr. Notes Theor.
Comput. Sci. 157.1 (2006), pp. 39–59.

[REJ09] Derek Rayside, H.-Cristian Estler, and Daniel Jackson. The guided improvement algorithm
for exact, general-purpose, many-objective combinatorial optimization. Tech. rep. MIT-CSAIL-
TR-2009-033. Massachsetts Institue of Technology, 2009.

[Ren+12] Arend Rensink et al. User Manual for the GROOVE Tool Set. 2012.

[Ren06] Arend Rensink. “Isomorphism Checking in GROOVE”. In: GaBaTS. Vol. 4549. LNCS. Springer,
2006.

[Rey+13] Andrew Reynolds et al. “Finite Model Finding in SMT”. In: CAV. Vol. 8044. LNCS. Springer,
2013, pp. 640–655. doi: 10.1007/978-3-642-39799-8_42.

[Rie17] Leanna Rierson. Developing Safety-Critical Software. Vol. 7. 4. CRC Press, 2017, pp. 22–27.
doi: 10.1201/9781315218168.

[RST89] Andrew L. Reibman, Roger Smith, and Kishor S. Trivedi. “Markov and Markov reward model
transient analysis: An overview of numerical approaches”. In: Eur. J. Oper. Res. 4.2 (1989),
pp. 257–267. doi: 10.1016/0377-2217(89)90335-4.

[RSV17] Sebastian Rehberger, Lucas Spreiter, and Birgit Vogel-Heuser. “An agent-based approach
for dependable planning of production sequences in automated production systems”. In:
Automatisierungstechnik 65.11 (2017), pp. 766–778. doi: 10.1515/auto-2017-0040.

[RSW04] Thomas W Reps, Mooly Sagiv, and Reinhard Wilhelm. “Static program analysis via 3-valued
logic”. In: CAV. 2004, pp. 15–30.

[RTC11] RTCA, Inc. DO-330 Sofware Tool Qualification Considerations. 2011.

[SAB09] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. “From UML to Alloy and
back again”. In: MoDeVVa. ACM, 2009.

[Sal+15] Rick Salay et al. “A Methodology for Verifying Refinements of Partial Models”. In: Journal
of Object Technology 14.3 (2015), 3:1–31.

[SB16] Jean-Sébastien Sottet and Nicolas Biri. “JSMF: a Javascript Flexible Modelling Framework”. In:
FlexMD@MODELS. Vol. 1694. CEUR Workshop Proceedings. CEUR-WS.org, 2016, pp. 42–51.
url: http://ceur-ws.org/Vol-1694/FlexMDE2016%5C_paper%5C_5.pdf.

[SC15] Rick Salay and Marsha Chechik. “A Generalized Formal Framework for Partial Modeling”.
English. In: FASE. Vol. 9033. LNCS. Springer Berlin Heidelberg, 2015, pp. 133–148.

[Sch+07] Pierre-Yves Schobbens et al. “Generic semantics of feature diagrams”. In: Comput. Networks
51.2 (2007), pp. 456–479. doi: 10.1016/j.comnet.2006.08.008.

[Sch95] Andy Schürr. “Specification of Graph Translators with Triple Graph Grammars”. In: WG
1994. Springer, 1995, pp. 151–163. doi: 10.1007/3-540-59071-4_45.

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & sons, 1998.
isbn: 978-0-471-98232-6.

145

https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1023/A:1007905003094
https://doi.org/10.1023/A:1007905003094
http://www.omg.org/spec/QVT/1.3/
https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1201/9781315218168
https://doi.org/10.1016/0377-2217(89)90335-4
https://doi.org/10.1515/auto-2017-0040
http://ceur-ws.org/Vol-1694/FlexMDE2016%5C_paper%5C_5.pdf
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1007/3-540-59071-4_45


References

[SE06] Mehrdad Sabetzadeh and Steve Easterbrook. “View merging in the presence of incomplete-
ness and inconsistency”. In: Requir. Eng. 11.3 (2006), pp. 174–193. doi: 10.1007/s00766-006-
0032-y.

[Sem+17] Oszkár Semeráth et al. “Formal Validation of Domain-Specific Languages with Derived
Features and Well-Formedness Constraints”. In: Softw. Syst. Model 16.2 (2017), pp. 357–392.
doi: 10.1007/s10270-015-0485-x.

[Sem+19] Oszkár Semeráth et al. “VIATRA Solver: A Framework for the Automated Generation of
Consistent Domain-Specific Models”. In: ICSE Demo. IEEE, 2019, pp. 43–46.

[Sem+20c] Oszkár Semeráth et al. “Diversity of Graph Models and Graph Generators in Mutation
Testing”. In: Int. J. Softw. Tools Technol. Transf. 22.1 (2020), pp. 57–78.

[SFC12] Rick Salay, Michalis Famelis, and Marsha Chechik. “Language Independent Refinement
Using Partial Modeling”. In: FASE. Vol. 7212. LNCS. Springer, 2012, pp. 224–239.

[SLO17] Sven Schneider, Leen Lambers, and Fernando Orejas. “Symbolic model generation for graph
properties”. In: FASE. Vol. 10202. LNCS. Springer, 2017, pp. 226–243.

[SNP13] Jaroslaw Skaruz, Artur Niewiadomski, and Wojciech Penczek. “Evolutionary Algorithms for
Abstract Planning”. In: PPAM. LNTCS 8384. Springer, 2013, pp. 392–401. doi: 10.1007/978-
3-642-55224-3\_37.

[SNV18] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. “A Graph Solver for the Auto-
mated Generation of Consistent Domain-Specific Models”. In: ICSE ’18. ACM, 2018, pp. 969–
980.

[Soe+10] Mathias Soeken et al. “Verifying UML/OCL models using Boolean satisfiability”. In: DATE.
IEEE, 2010, pp. 1341–1344.

[Son+11] Hui Song et al. “Instant and Incremental QVT Transformation for Runtime Models”. In:
MODELS 2011. Springer, 2011, pp. 273–288. doi: 10.1007/978-3-642-24485-8_20.

[SPV18] Gagandeep Singh, Markus Püschel, and Martin Vechev. “A Practical Construction for Decom-
posing Numerical Abstract Domains”. In: Proc. ACM Program. Lang. 2.POPL (2018). Article
no. 2. doi: 10.1145/3158143.

[Spy05] Peter Spyns. “Adapting the Object Role Modelling Method for Ontology Modelling”. In:
ISMIS. Vol. 3488. LNCS. Springer, 2005, pp. 276–284. doi: 10.1007/11425274\_29.

[SRA92] A. K. Somani, J. A. Ritcey, and S. H. L. Au. “Computationally-efficient phased-mission
reliability analysis for systems with variable configurations”. In: IEEE Tran. Reliability 41.4
(1992), pp. 504–511. doi: 10.1109/24.249576.

[SSB17] G. Soltana, M. Sabetzadeh, and L. C. Briand. “Synthetic data generation for statistical testing”.
In: ASE. 2017, pp. 872–882. doi: 10.1109/ASE.2017.8115698.

[SSB20] Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. “Practical Constraint Solving
for Generating System Test Data”. In: ACM Trans. Softw. Eng. Methodol. 29.2 (2020), 11:1–
11:48. doi: 10.1145/3381032.

[Ste+09] Dave Steinberg et al. EMF: Eclipse Modeling Framework. 2nd ed. Addison-Wesley Prof., 2009.

[Ste10] Perdita Stevens. “Bidirectional model transformations in QVT: semantic issues and open
questions”. In: Soft. Syst. Model. 9.7 (2010). doi: 10.1007/s10270-008-0109-9.

[Ste14] Perdita Stevens. “Bidirectionally tolerating inconsistency: partial transformations”. In: FASE.
Springer, 2014, pp. 32–46. doi: 10.1007/978-3-642-54804-8_3.

[Sur+10] Neeraj Suri et al. “A software integration approach for designing and assessing dependable
embedded systems”. In: J. Syst. Softw. 83 (2010), pp. 1780–1800. doi: 10.1016/j.jss.2010.
04.063.

[SV17] Oszkár Semeráth and Dániel Varró. “Graph Constraint Evaluation over Partial Models by
Constraint Rewriting”. In: ICMT. 2017, pp. 138–154. doi: 10.1007/978-3-319-61473-1_10.

[SVV16] Oszkár Semeráth, András Vörös, and Dániel Varró. “Iterative and Incremental Model Gener-
ation by Logic Solvers”. In: FASE. 2016, pp. 87–103. doi: 10.1007/978-3-662-49665-7_6.

146

https://doi.org/10.1007/s00766-006-0032-y
https://doi.org/10.1007/s00766-006-0032-y
https://doi.org/10.1007/s10270-015-0485-x
https://doi.org/10.1007/978-3-642-55224-3\_37
https://doi.org/10.1007/978-3-642-55224-3\_37
https://doi.org/10.1007/978-3-642-24485-8_20
https://doi.org/10.1145/3158143
https://doi.org/10.1007/11425274\_29
https://doi.org/10.1109/24.249576
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1145/3381032
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/978-3-642-54804-8_3
https://doi.org/10.1016/j.jss.2010.04.063
https://doi.org/10.1016/j.jss.2010.04.063
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-662-49665-7_6


References

[SysML2] The Object Management Group. 2022. url: https://github.com/Systems-Modeling/
SysML-v2-Release/tree/2022-11.

[SysMod] System Modeling course. Budapest Univ. of Technology and Economics. url: https://
portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/.

[SZ13] Michael Szvetits and Uwe Zdun. “Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime”. In: Software & Systems Modeling 15.1 (2013),
pp. 31–69. issn: 1619-1366. doi: 10.1007/s10270-013-0394-9.

[Szá+14] Gábor Szárnyas et al. “IncQuery-D: A Distributed Incremental Model Query Framework in
the Cloud”. In: MODELS. Vol. 8767. LNCS. Springer, 2014, pp. 653–669. doi: 10.1007/978-3-
319-11653-2_40.

[Szá+17] Gábor Szárnyas et al. “The Train Benchmark: cross-technology performance evaluation of
continuous model queries”. In: Softw. Syst. Model. (2017). doi: 10.1007/s10270-016-0571-8.

[TGS06] Matthias Tichy, Holger Giese, and Andreas Seibel. “Story diagrams in real-time software”.
In: Proc. of the 4th International Fujaba Days. 2006, pp. 15–22.

[TH19] Joze Tavcar and Imre Horvath. “A review of the principles of designing smart cyber-physical
systems for run-time adaptation: Learned lessons and open issues”. In: IEEE Trans. Syst. Man
Cybern. Syst. 49.1 (2019), pp. 145–158. doi: 10.1109/TSMC.2018.2814539.

[TJ07] Emina Torlak and Daniel Jackson. “Kodkod: A relational model finder”. In: TACAS. Springer,
2007, pp. 632–647.

[TM15] Zoltán Theisz and Gergely Mezei. “An Algebraic Instantiation Technique Illustrated by
Multilevel Design Patterns”. In: MULTI@MODELS. Vol. 1505. CEUR Workshop Proceedings.
CEUR-WS.org, 2015, pp. 53–62. url: http://ceur-ws.org/Vol-1505/p6.pdf.

[TR96] Juha Taina and Kimmo Raatikainen. “Rodain: A real-time object-oriented database sys-
tem for telecommunications”. In: International Conference on Information and Knowledge
Management. 1996, pp. 10–14. doi: 10.1145/352302.352306.

[Ujh+15] Zoltán Ujhelyi et al. “EMF-IncQuery: An integrated development environment for live
model queries”. In: Sci. Comput. Program. 98.1 (2015), pp. 80–99. doi: 10.1016/j.scico.
2014.01.004.

[UML] The Object Management Group. Object Constraint Language, v2.5.1. 2017. url: https://www.
omg.org/spec/UML/2.5.1.

[UTM18] Dániel Urbán, Zoltán Theisz, and Gergely Mezei. “Self-describing Operations for Multi-
level Meta-modeling”. In: MODELSWARD. SciTePress, 2018, pp. 519–527. doi: 10.5220/
0006656105190527.

[Var+06] Dániel Varró et al. “Termination Analysis of Model Transformations by Petri Nets”. In: ICGT.
Vol. 4178. LNCS. Springer, 2006, pp. 260–274. doi: 10.1007/11841883_19.

[Var+15] Gergely Varró et al. “An algorithm for generating model-sensitive search plans for pattern
matching on EMF models”. In: Softw. Syst. Model. (2015), pp. 597–621. doi: 10.1007/s10270-
013-0372-2.

[Var+16] Dániel Varró et al. “Road to a reactive and incremental model transformation platform: three
generations of the VIATRA framework”. In: Softw. Syst. Model. 15.3 (2016), pp. 609–629. doi:
10.1007/s10270-016-0530-4.

[Var+18] Dániel Varró et al. “Towards the Automated Generation of Consistent, Diverse, Scalable and
Realistic Graph Models”. In: Graph Transformation, Specifications, and Nets – In Memory of
Hartmut Ehrig. LNCS 10800. Springer, 2018, pp. 285–312. doi: 10.1007/978-3-319-75396-
6_16.

[VB07] Dániel Varró and András Balogh. “The Model Transformation Language of the VIATRA2
Framework”. In: Sci. Comput. Program. 68.3 (2007), pp. 214–234. doi: 10.1016/j.scico.
2007.05.004.

147

https://github.com/Systems-Modeling/SysML-v2-Release/tree/2022-11
https://github.com/Systems-Modeling/SysML-v2-Release/tree/2022-11
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1109/TSMC.2018.2814539
http://ceur-ws.org/Vol-1505/p6.pdf
https://doi.org/10.1145/352302.352306
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.5220/0006656105190527
https://doi.org/10.5220/0006656105190527
https://doi.org/10.1007/11841883_19
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1016/j.scico.2007.05.004


References

[Vog+15] Birgit Vogel-Heuser et al. “Evolution of software in automated production systems: Chal-
lenges and research directions”. In: J. Syst. Softw. 110 (2015), pp. 54–84. doi: 10.1016/j.jss.
2015.08.026.

[Vör+18b] András Vörös et al. “MoDeS3: Model-Based Demonstrator for Smart and Safe Cyber-Physical
Systems”. In: NASA Formal Methods. 2018, pp. 460–467.

[VP03] Dániel Varró and András Pataricza. “VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML (The Mathematics of Metamod-
eling is Metamodeling Mathematics)”. In: Softw. Syst. Model. 2.3 (2003), pp. 187–210. doi:
10.1007/s10270-003-0028-8.

[WA21] Nils Weidmann and Anthony Anjorin. “Schema Compliant Consistency Management via
Triple Graph Grammars and Integer Linear Programming”. In: Formal Aspects Comput. 33.6
(2021), pp. 1115–1145. doi: 10.1007/s00165-021-00557-0.

[Wag+22] D.A. Wagner et al. “Ontological Metamodeling and Analysis Using openCAESAR”. In:
Handbook of Model-Based Systems Engineering. Springer, 2022. doi: 10.1007/978-3-030-
27486-3_78-1.

[Wec+18] Markus Weckesser et al. “Mathematical Programming for Anomaly Analysis of Clafer
Models”. In: MODELS. ACM, 2018, pp. 34–44. doi: 10.1145/3239372.3239398.

[Wen+05] I. Wenzel et al. “Measurement-based worst-case execution time analysis”. In: Third IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05).
2005, pp. 7–10. doi: 10.1109/SEUS.2005.12.

[Wil+08] Reinhard Wilhelm et al. “The worst-case execution-time problem-overview of methods
and survey of tools”. In: Transactions on Embedded Computing Systems 7.3 (2008). doi:
10.1145/1347375.1347389.

[Wil17] Edward D. Willink. “The Micromapping Model of Computation; The Foundation for Opti-
mized Execution of Eclipse QVTc/QVTr/UMLX”. In: ICMT 2017. Springer, 2017, pp. 51–65.
doi: 10.1007/978-3-319-61473-1_4.

[WT07] Dazhi Wang and Kishor S. Trivedi. “Reliability Analysis of Phased-Mission System With
Independent Component Repairs”. In: IEEE Tran. Reliability 56.3 (2007), pp. 540–551. doi:
10.1109/TR.2007.903268.

[Wu16] HaoWu. “An SMT-based Approach for Generating Coverage OrientedMetamodel Instances”.
In: Int. J. Inf. Syst. Model. Design 7.3 (2016).

[Xia+11] Jianwen Xiang et al. “Automatic Synthesis of Static Fault Trees from System Models”. In:
SSIRI. IEEE, 2011. doi: 10.1109/SSIRI.2011.32.

[Xie+21] Cheng Xie et al. “Multilayer Internet-of-Things Middleware Based on Knowledge Graph”. In:
IEEE Internet of Things Journal 8.4 (2021), pp. 2635–2648. doi: 10.1109/JIOT.2020.3019707.

[Xin07] Liudong Xing. “Reliability Evaluation of Phased-Mission Systems With Imperfect Fault
Coverage and Common-Cause Failures”. In: IEEE Tran. Reliability 56.1 (2007), pp. 58–68. doi:
10.1109/TR.2006.890900.

[Yak] Yakindu Statechart Tools. Yakindu.

[YBP07] Fang Yu, Tevfik Bultan, and Erik Peterson. “Automated Size Analysis for OCL”. In: ESEC /
FSE. ACM, 2007, pp. 331–340. doi: 10.1145/1287624.1287671.

[ZDG09] Haitao Zhu, Matthew B. Dwyer, and Steve Goddard. “Predictable runtime monitoring”. In:
Euromicro Conference on Real-Time Systems 2 (2009), pp. 173–183.

148

https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1007/s10270-003-0028-8
https://doi.org/10.1007/s00165-021-00557-0
https://doi.org/10.1007/978-3-030-27486-3_78-1
https://doi.org/10.1007/978-3-030-27486-3_78-1
https://doi.org/10.1145/3239372.3239398
https://doi.org/10.1109/SEUS.2005.12
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1007/978-3-319-61473-1_4
https://doi.org/10.1109/TR.2007.903268
https://doi.org/10.1109/SSIRI.2011.32
https://doi.org/10.1109/JIOT.2020.3019707
https://doi.org/10.1109/TR.2006.890900
https://doi.org/10.1145/1287624.1287671


AppendixA
Proofs of propositions from Chapter 2

A.1 4-valued partial models

Proposition 2.9 Refinement of 4-valued partial models is transitive, i.e., if %,&, ' are regular
partial models, % <ref 1 & , and & <ref 2 ', then % <ref 3 ' for some refinement ref 3.

Proof. We will set ref 3 = ref 2 ◦ ref 1 = {〈?, A 〉 | 〈?, @〉 ∈ ref 1, 〈@, A 〉 ∈ ref 2} and show that it
satisfies the properties of a refinement relation.

VR1: Let ? ∈ O% and I% (ε) (?) 4 1. By VR1, there is some 〈?, @〉 ∈ ref 1 and I% (ε) (?) <
I& (ε) (@). This means that I& (ε) (@) 4 1. Therefore, by VR1, there is some 〈@, A 〉 ∈ ref 2 and
I& (ε) (@) < I' (ε) (A ). Hence, we conclude that 〈?, A 〉 ∈ ref 3 and I% (ε) (?) < I& (ε) (@) < I' (ε) (A )
as required.

VR2: Let A ∈ O' with I' (ε) (A ) < 1. By VR2, there is some @ ∈ O& such that 〈@, A 〉 ∈ ref 2
and I& (ε) (@) < 1. Thus, there is some ? ∈ O% such that 〈?, @〉 ∈ ref 1 and I% (ε) (?) < 1. Hence,
we conclude that 〈?, A 〉 ∈ ref 3 as required.

VR3: Let e ∈ Σ \ {ε}, 〈?1, A1〉, . . . , 〈?U (e ) , AU (e )〉 ∈ ref 3. Then there are @1, . . . , @U (f ) ∈ O&

such that 〈?1, @1〉, . . . , 〈?U (e ) , @U (e )〉 ∈ ref 1 and 〈@1, A1〉, . . . , 〈@U (e ) , AU (e )〉 ∈ ref 2. By VR3,

I% (e) (?1, . . . , ?U (e ) ) < I& (e) (@1, . . . , @U (e ) ) < I' (e) (A1, . . . , AU (e ) )

due to the transitivity of the information ordering relation < of 4-valued logic values.
VR4: Let 〈?, @〉 ∈ ref 1 and 〈@, A 〉 ∈ ref 2. Then we have 〈?, A 〉 ∈ ref 3 according to the

definition of ref 3 and also V% (?) ⊇ V& (@) ⊇ V' (A ) by VR4 as required. 2

Lemma 2.11 The semantics of expressions obeys partial model refinement, i.e., if % =

〈O% ,I% ,V% 〉 and & = 〈O& ,I& ,V&〉 are 4-valued partial models over the signature 〈Σ, U〉,
% <ref & for some refinement ref , i is a logic formula (resp. ` is a numerical expression)
with free variables + = {E1, . . . , E: }, / : + → O% and . : + → O& are variable bindings, and
〈/ (E), . (E)〉 ∈ ref for all E ∈ + , then JiK%

/
< JiK&

.
(resp. L`M%

/
⊇ L`M&

.
).

Proof. We will proceed by induction over formulas i and expressions `. In our induction
hypothesis, we will assume that Lemma 2.11 holds for all sub-formulas (sub-expressions) of
i and `, as well as all formulas with strictly fewer transitive closure operations e+ or strictly
fewer existential quantifiers ∀ than i . Since all formulas contain finitely many sub-formulas,
quantifiers, and transitive closure operators, this induces a well-founded partial order on formulas
and expressions (i.e., all downward chains terminate in an atomic formula or a numerical literal

149



A. Proofs of propositions from Chapter 2

as the base case). Therefore, we may prove Lemma 2.11 by proving the induction hypothesis via
case analysis:

e (E1, . . . , EU (e ) ), E1 ∼ E2: The base cases of atomic formulas are satisfied due to Condition VR3.
¬i1, i1 ∨ i2, i1 ∧ i2: We appeal to the induction hypothesis on i1 and i2, as well as to the

monotonicity of the ¬4, ∨4, ∧4 connectives of 4-valued logic w.r.t. the information ordering <.
∃E : i1: If J∃E : i1K%/ = ½, then J∃E : i1K&. 4 J∃E : i1K

%
/
= ½ trivially holds.

If J∃E : i1K%/ = 1, then there must be some ? ∈ O% such that I% (ε) (?) ∧4 Ji1K%/,E ↦→?
4 1.

This means that I% (ε) (?) 4 1 and Ji1K%/,E ↦→?
4 1. By VR1, there is some 〈?, @〉 ∈ ref such

that I& (ε) (@) 4 I% (ε) (?) 4 1. By the induction hypothesis, Ji1K%/,E ↦→?
< Ji1K

&

.,E ↦→@
. Therefore,

I& (ε) (@) ∧4 Ji1K
&

.,E ↦→@
4 1, which means that J∃E : i1K&. 4 1 as required.

If J∃E : i1K%/ = 0, then I% (ε) (?′) ∧4 Ji1K%/,E ↦→?′ = 0 for all ?′ ∈ O% . Assume for the sake

of contradiction that J∃E : i1K&. = ½ or 1. This means that there is some @ ∈ O& such that
I& (ε) (@) ∧4 Ji1K

&

.,E ↦→@
< 1. Therefore, I& (ε) (@) < 1 and Ji1K

&

.,E ↦→@
< 1. By VR2, there is some

〈?, @〉 ∈ ref such that I% (ε) (?) < 1. Since I% (ε) (?) ∧4 Ji1K%/,E ↦→?
= 0, we must have I% (ε) (?) = ½

and Ji1K%/,E ↦→?
=  . But, by the induction hypothesis,  = Ji1K%/,E ↦→?

< Ji1K
&

.,E ↦→~
< 1, which is

a contradiction. Our assumption cannot hold. Thus, 0 = J∃E : i1K%/ < J∃E : i1K
&

.
as required.

If J∃E : i1K%/ =  , then I% (ε) (?′) ∧4 Ji1K%/,E ↦→?′ 4 0 for all ?′ ∈ O% and there is some ? ∈ O%

such that I% (ε) (?) ∧4 Ji1K%/,E ↦→?
=  .

First we will show that I& (ε) (@′) ∧4 Ji1K
&

.,E ↦→@′ 4 0 for all @′ ∈ O& . Assume for the sake

of contradiction that there is some @′′ ∈ O& such that I& (ε) (@′′) ∧4 Ji1K
&

.,E ↦→@′′ < 1. Therefore,

I& (ε) (@′′) < 1 and Ji1K
&

.,E ↦→@′′ < 1. By VR2, there is some 〈?′′, @′′〉 ∈ ref such thatI% (ε) (?′′) < 1.
Since I% (ε) (?′′) ∧4 Ji1K%.,E ↦→?′′ 4 0, we must also have Ji1K%.,E ↦→?′′ 4 0. But, by the induction

hypothesis, 0 < Ji1K%.,E ↦→?′′ < Ji1K
&

.,E ↦→@′′ < 1, which is a contradiction as required.
Now consider the individual ? ∈ O% with I% (ε) (?) ∧4 Ji1K%/,E ↦→?

=  . We have I% (ε) (?) 4 1,
Ji1K%/,E ↦→?

4 1, and either have I% (ε) (?) =  or Ji1K%/,E ↦→?
=  . If I% (ε) (?) =  , then, by VR1,

there exists some 〈?, @〉 ∈ ref such that  = I% (ε) (?) < I& (ε) (@) =  . By the induction
hypothesis, 1 < Ji1K%/,E ↦→?

< Ji1K
&

.,E ↦→@
. Conversely, if Ji1K%/,E ↦→?

=  , then  = Ji1K%/,E ↦→?
<

Ji1K
&

.,E ↦→@
=  by the induction hypothesis and 1 < I% (ε) (?) < I& (ε) (@). In both cases, we have

I& (ε) (@) ∧4 Ji1K
&

.,E ↦→@
=  .

Putting the two statements above together, we have shown that J∃E : i1K&. =  as required.
∀E : i1: The formula ∃E : ¬i1 has one fewer existential quantifiers than ∀E : i1. Therefore,

we may appeal to the induction hypothesis and the monotonicity of the ¬4 connective w.r.t. the
information ordering <.

e+(E1, E2): The formula

e (E1, E2) ∨
| O% |∨
8=1

∃D1 : · · · ∃D8 : e (E1, D1) ∧
8−1∧
9=1
e (D 9 , D 9+1) ∧ e (D8 , E2)

has one fewer transitive closure operators than e+(E1, E2). Therefore, we may appeal to the
induction hypothesis.

`1 ∈ iv: If J`1 ∈ ivK%
/
= ½, then the lemma is trivially satisfied.

If J`1 ∈ ivK%
/
= 1, then L`1M%/ ⊆ iv. By the induction hypothesis, iv ⊇ L`1M%/ ⊇ L`1M

&

.
. We

either have L`1M
&

.
= ∅ and 1 = J`1 ∈ ivK%

/
< J`1 ∈ ivK&

.
=  , or 1 = J`1 ∈ ivK%

/
< J`1 ∈ ivK&

.
= 1.

In both cases, the lemma is satisfied.

150



A. Proofs of propositions from Chapter 2

If J`1 ∈ ivK%
/
= 0, then L`1M%/∩iv = ∅. By the induction hypothesis, ∅ = L`1M%/∩iv ⊇ L`1M

&

.
∩iv.

We either have L`1M
&

.
= ∅ and 0 = J`1 ∈ ivK%

/
< J`1 ∈ ivK&

.
=  , or 0 = J`1 ∈ ivK%

/
< J`1 ∈

ivK&
.
= 0. In both cases, the lemma is satisfied.

If J`1 ∈ ivK%
/
=  , then L`1M%/ = ∅. By the induction hypothesis, we have ∅ = L`1M%/ ⊇ L`1M

&

.
=

∅. Therefore, as J`1 ∈ ivK&
.
=  as required.

literal: Observe that LliteralM%
/
= LliteralM&

.
= {literal}, because the semantics of a numerical

literal expression is independent of the partial model and the variable binding. Therefore, the
lemma is trivially satisfied in this base case.

E : By VR4, we have V% (/ (E)) ⊇ V& (. (E)). Therefore, LEM%/ ⊇ LEM&
.

as required.
`1 〈op〉 `2: We appeal to the induction hypothesis and the monotonicity of the interval

algebra operators +♯, −♯, ·♯, /♯, and ↑♯. 2

A.2 Scoped partial models

Proposition 2.26 Refinement of regular scoped partial models is transitive, i.e., if %,&, '
are regular partial models, % <ref 1 & , and & <ref 2 ', then % <ref 3 ' for some refinement ref 3.

Proof. We will set ref 3 = ref 2 ◦ ref 1 = {〈?, A 〉 | 〈?, @〉 ∈ ref 1, 〈@, A 〉 ∈ ref 2} and show that
it satisfies the properties of a refinement relation. We may prove the conditions SR1–SR3
analogously to the conditions VR1–VR3 in Proposition 2.9 by noting that the information
ordering of 3-valued logic values coincides with that of 4-valued logic values. Thus, only SR4
remains to be handled here. In the proof for the transitivity of SR4, we will make use of the
regularity of the partial models involved, but the transitivity of SR1–SR3 holds even for scoped
partial models that are not regular.

SR4: We will show that S% [ref 1] [ref 2] = S% [ref 3]. Consider a variable x = Ŵ (?1, . . . , ?U (W ) )
in X% . In the [ref 1] substitution of S% , x will get replaced by the sum

∑
y∈Y y of the variables in

Y = {Ŵ (@1, . . . , @U (W ) ) | 〈?1, @1, 〉, . . . , 〈?U (W ) , @U (W )〉 ∈ ref 1}.

Assume for the sake of contradiction that y = Ŵ (@1, . . . , @U (W ) ) and y′ = Ŵ (@′1, . . . , @′U (W ) ) are two
distinct variables in Y such that the sets

Zy = {Ŵ (A1, . . . , AU (W ) ) | 〈@1, A1, 〉, . . . , 〈@U (W ) , AU (W )〉 ∈ ref 2},
Zy′ = {Ŵ (A1, . . . , AU (W ) ) | 〈@′1, A1, 〉, . . . , 〈@′U (W ) , AU (W )〉 ∈ ref 2}

have at least one element z = Ŵ (A1, . . . , AU (W ) ) in common. Since y ≠ y′ there must be some
1 ≤ 8 ≤ U (W) such that @8 ≠ @′8 . However, z ∈ Zy and z ∈ Zy′ imply that both 〈@8 , A8〉, 〈@′8 , A8〉 ∈
ref 2. Since ' is regular, I' (∼)(A8 , A8) = 1. By SR3, we also have I& (∼)(@8 , @′8 ) ≠ 0. This would
mean that & is not regular, which is a contradiction. The sets Zy and Zy′ must be disjoint for
any distinct y, y′ ∈ Y. Therefore, the substitution [ref 2] of S% [ref 1] replaces each term y of
the sums

∑
y∈Y y obtained from x by the first substitution [ref 1] with non-overlapping sums∑

z∈Zy
z. Taken together, the substitutions [ref 1] [ref 2] have the effect of replacing x with the

sum
∑

z∈Z z, where

Z =
⋃
y∈Y

Zy = {Ŵ (A1, . . . , AU (W ) ) | 〈?1, A1〉, . . . , 〈?U (W ) , AU (W )〉 ∈ ref 2 ◦ ref 1},

which is precisely the substitution [ref 3]. By SR4, we have S& � S% [ref 1] and S' � S& [ref 2]
and thus S' � S& [ref 2] � S% [ref 1] [ref 2] = S% [ref 3] required. 2

151



A. Proofs of propositions from Chapter 2

Lemma 2.28 If % = 〈O% ,I% ,S% 〉 and & = 〈O& ,I& ,S&〉 are regular scoped partial models
over the signature 〈Σ, Γ, U〉, % <ref & for some refinement ref , + = {E1, . . . , E<} is a set of
variables, / : + → O% and . : + → O& are variable bindings, 〈/ (E), . (E)〉 ∈ ref for all
E ∈ + , and W, X ∈ Γ, then

a. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ * , then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ * .
b. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ !, and 〈Ē1, . . . , ĒU (W )〉 is / -focused,

then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≥ !; and
c. if S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ #[X (Ē ′1, . . . , Ē ′U (X ) )]

%
/
, and 〈Ē ′1, . . . , Ē ′U (X )〉 is / -focused,

then S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ #[X (Ē ′1, . . . , Ē ′U (X ) )]
&

.
.

Proof. Case a: Assume for the sake of contradiction thatS& 2 #[W (Ē1, . . . , ĒU (W ) )]&. ≤ * , i.e., there
is some binding : : X& → ℕ such that

∑
〈@1,...,@U (W ) 〉∈resolve&. (Ē1,...,ĒU (W ) )

: (Ŵ (@1, . . . , @U (W ) )) ≥ * + 1.
Consider the binding : ′ : X% → ℕ, where, for all X ∈ Γ and @′1, . . . , @

′
U (X ) ∈ O& ,

: ′(X̂ (@′1, . . . , @′U (X ) )) =
∑

〈?′
1,@

′
1 〉,...,〈?′

U (X ) ,@
′
U (X ) 〉∈ref

: (X̂ (?′1, . . . , ?′U (X ) )).

By SR4, we have : � S% [ref ], which implies : ′ � S% . We will show that

* + 1 ≤
∑

〈@1,...,@U (W ) 〉∈resolve&. (Ē1,...,ĒU (W ) )
: (Ŵ (@1, . . . , @U (W ) )) (A.1)

≤
∑

〈?1,...,?U (W ) 〉∈resolve%/ (Ē1,...,ĒU (W ) )

∑
〈?1,@1 〉,...,〈?U (W ) ,@U (W ) 〉∈ref

: (Ŵ (@1, . . . , @U (W ) )) (A.2)

=
∑

〈?1,...,?U (W ) 〉∈resolve%/ (Ē1,...,ĒU (W ) )
: ′(Ŵ (?1, . . . , ?U (W ) ))

by showing that any term appearing in the summation (A.1) also appears in (A.2), while the rest
of the terms in (A.2) are nonnegative.

Consider the case when some term : (Ŵ (@1, . . . , @U (W ) )) of (A.1) does not appear in (A.2).
This means that there is some index 1 ≤ 8 ≤ U (W) such that there is no 〈?1, . . . , ?U (W )〉 ∈
resolve%/ (Ē1, . . . , ĒU (W ) ) with 〈?1, @8〉 ∈ ref . If Ē8 ∈ + , this is impossible, because then we have
?8 = / (Ē8), @8 = . (Ē8), and 〈/ (Ē8), . (Ē8)〉 ∈ ref by assumption. If Ē8 = ∗, this is also impossible:
Since & is regular, we have I& (ε) (@8 , @8) ≠ 0. Thus, there must exist some ?8 ∈ O% with
〈?8 , @8〉 ∈ ref due to SR2. As a result, all terms of (A.1) must also appear in (A.2).

Therefore, : ′ � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ * + 1. But we also have : ′ � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ * ,
which is a contradiction. We must have had S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ * originally as required
by the statement of the lemma.

Case b: Assume for the sake of contradiction that S& 2 #[W (Ē1, . . . , ĒU (W ) )]&. ≥ !, i.e., there
is some binding : : X& → ℕ such that

∑
〈@1,...,@U (W ) 〉∈resolve&. (Ē1,...,ĒU (W ) )

: (Ŵ (@1, . . . , @U (W ) )) ≤ ! + 1.
Like in case a, consider the binding : ′ : X% → ℕ, where, for all X ∈ Γ and @′1, . . . , @

′
U (X ) ∈ O& ,

: ′(X̂ (@′1, . . . , @′U (X ) )) =
∑

〈?′
1,@

′
1 〉,...,〈?′

U (X ) ,@
′
U (X ) 〉∈ref

: (X̂ (?′1, . . . , ?′U (X ) )),

which satisfies : ′ � S% by SR4. We may assume w.l.o.g. that Ē1 = E1, . . . , Ē< = E<, Ē<+1 =

∗, . . . , Ē< = ∗, i.e., the first< variables in the mask 〈Ē1, . . . , ĒU (e )〉 are bound while the rest are

152



A. Proofs of propositions from Chapter 2

wildcards. We will show that

! + 1 ≥
∑

〈@1,...,@U (W ) 〉∈resolve&. (E1,...,E<,∗,...,∗)
: (X̂ (@1, . . . , @U (W ) ))

=
∑

@<+1,...,@U (W ) ∈O&

: (X̂ (. (E1), . . . , . (E<), @<+1, . . . , @U (W ) )) (A.3)

=
∑

?<+1,...,?U (W ) ∈O%

∑
〈/ (E1 ),@1 〉,...,〈/ (E< ),@< 〉,〈?<+1,@<+1 〉,...,〈?U (W ) ,@U (W ) 〉∈ref

: (X̂ (@1, . . . , @U (W ) ))

(A.4)

=
∑

?<+1,...,?U (W ) ∈O%

: ′(X̂ (/ (E1), . . . , / (E<), ?<+1, . . . , ?U (W ) ))

=
∑

〈?1,...,?U (W ) 〉∈resolve%/ (E1,...,E<,∗,...,∗)
: ′(X̂ (?1, . . . , ?U (W ) ))

by showing that each term in (A.3) appears exactly once in (A.4) and vice verse.
Firstly, consider the case when a term : (Ŵ (@1, . . . , @U (W ) )) appears in (A.4), but does not

appear in (A.3). Then we have some 1 ≤ < such that @8 ≠ . (E8). This means that we have
〈/ (E1), . (E8)〉, 〈/ (E8), @8〉 ∈ ref . Since our mask is / -focused, I% (∼)(/ (E8), / (E8)) = 1. By SR3,
I& (∼)(. (E8), @8) = 1. But this would violate the regularity of & , so all terms of (A.4) must also
appear in (A.3).

We handle the situation when a term of (A.3) is missing from (A.4) analogously to case a.
Consider the case when some term : (Ŵ (. (E1), . . . , . (E<), @<+1, . . . , @U (W ) )) in (A.3) appears

twice in (A.4). This would mean that there is some 1 ≤ 9 ≤ U (W) and two distinct ? 9 , ?′9 ∈ O%

such that 〈? 9 , @ 9 〉, 〈?′9 , @ 9 〉 ∈ ref . Since& is regular, I& (∼)(@ 9 , @ 9 ) ≠ 0. By SR3, I& (∼)(? 9 , ?′9 ) = 0.
But this would violate the regularity of % due to ? 9 ≠ ?′9 , so no term of (A.3) can appear more
than once in (A.4).

Therefore, : ′ � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ ! − 1. But we also have : ′ � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ !,
which is a contradiction. We must have had S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≥ ! originally as required
by the statement of the lemma.

Case c: Assume that S& 2 #[W (Ē1, . . . , ĒU (W ) )]&. ≤ #[X (Ē ′1, . . . , Ē ′U (W ) )]
&

.
, i.e., there is some

binding : : X& → ℕ such that∑
〈@1,...,@U (W ) 〉∈resolve&. (Ē1,...,ĒU (W ) )

: (Ŵ (@1, . . . , @U (W ) )) ≥
∑

〈@′1,...,@′U (X ) 〉∈resolve
&

.
(Ē′1,...,Ē′U (X ) )

: (Ŵ (@′1, . . . , @′U (X ) )) + 1.

Let us construct the binding : ′ : X% → ℕ as in cases a and b. We determine that∑
〈?1,...,?U (W ) 〉∈resolve

?

/
(Ē1,...,ĒU (W ) )

: ′(Ŵ (?1, . . . , ?U (W ) )) ≥
∑

〈?′
1,...,?

′
U (X ) 〉∈resolve

%
/ (Ē′1,...,Ē′U (X ) )

: ′(Ŵ (?′1, . . . , ?′U (X ) )) + 1

by applying the reasoning from case a to the left side of the inequality and the reasoning from
case b to the right side of the inequality. This is a contradiction. Therefore, we must have had
S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ #[X (Ē ′1, . . . , Ē ′U (X ) )]

&

.
instead. 2

Lemma 2.30 The semantics of expressions obeys partial model refinement, i.e., if % =

〈O% ,I% ,S% 〉 and & = 〈O& ,I& ,S&〉 are regular scoped partial models over the scoped sig-
nature 〈Σ, Γ, U〉, % <ref & for some refinement ref , i is a logic formula with free variables
+ = {E1, . . . , E: }, / : + → O% and . : + → O& are variable bindings, and 〈/ (E), . (E)〉 ∈ ref

for all E ∈ + , then JiK%
/
< JiK&

.
.

153



A. Proofs of propositions from Chapter 2

Proof. We proceed by case analysis and structural induction over the sub-formulas of i as in the
proof of Lemma 2.7.

e (E1, . . . , EU (e ) ), E1 ∼ E2, ¬i1, i1 ∨ i2, i1 ∧ i2, ∃E : i1, ∀E : i1, e+(E1, E2): These cases can be
handled in the same way as in Lemma 2.7, but we can disregard the situations where JiK%

/
=  .

countW (Ē1, . . . , ĒU (W ) ) ≤ * : The case JcountW (Ē1, . . . , ĒU (W ) ) ≥ !K%
/
= ½ is trivial.

If JcountW (Ē1, . . . , ĒU (W ) ) ≤ * K%/ = 1, then S% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≤ * . By Lemma 2.28a,
we also have S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≤ * . Therefore, JcountW (Ē1, . . . , ĒU (W ) ) ≤ * K&. = 1.

If JcountW (Ē1, . . . , ĒU (W ) ) ≤ * K%/ = 0, thenS% � #[W (Ē1, . . . , ĒU (W ) )]%/ ≥ * +1. By Lemma 2.28b,
we also have S& � #[W (Ē1, . . . , ĒU (W ) )]&. ≥ * + 1. Therefore, JcountW (Ē1, . . . , ĒU (W ) ) ≤ * K&. = 0.

countW (Ē1, . . . , ĒU (W ) ) ≥ !: Analogous to the case of countW (Ē1, . . . , ĒU (W ) ) ≤ * , but we apply
Lemma 2.28b in the 1 subcase and Lemma 2.28a in the 0 subcase. 2

154



AppendixB
Proofs of propositions from Chapter 4

Theorem 4.1 (Forward refinement of predicates) Let i be a logic expression without
free variables and let % and & be regular scoped partial models, where % < & .

• If JiK% = 1, then JiK& = 1.
• If JiK% = 0, then JiK& = 0.

Proof. By Lemma 2.30, we have JiK% < JiK& . Therefore, if JiK% = 1, we must also have
1 < JiK& = 1, because in 3-valued logic, there is no  logic value. Likewise, if JiK% = 0, we must
also have 0 < JiK& = 0. 2

Theorem 4.2 (Backward refinement of predicates) Let i be a logic expression without
free variables and let % and & be regular scoped partial models, where % < & .

• If JiK& = 1, then JiK% < 1.
• If JiK& = 0, then JiK% < 0.

Proof. The statements follow immediately from JiK% < JiK& by Lemma 2.30. 2

Theorem 4.5 (Forward refinement of scopes) Let i be a logic expression with free vari-
ables + , % and & regular scoped partial models with % <ref & , / : + → O% and . : + → O&

variable binding with 〈/ (E), . (E)〉 ∈ ref for all E ∈ + , and !,* ∈ ℤ. Then the following
implications hold:

S% � #½E JiK%/ < ! =⇒ S& � #½E JiK
&

.
< !, (i)

S% � #1EJiK%/ > * =⇒ S& � #1EJiK
&

.
> * , (ii)

i.e., (i) when objects that may satisfy i violate a lower bound ! in % , they also violate it in
any refined partial model & , and (ii) objects that must satisfy i similarly carry forward the
violation of the upper bound* .

Proof. (i) Let us consider the signature 〈Σ, {ε}, U〉 over which the regular scoped partial models
% = 〈O% ,I% ,S% 〉 and & = 〈O& ,I& ,S&〉 are defined. Moreover, let % ′ = 〈O% ,I% ,S% ′〉 and
& ′ = 〈O& ,I& ,S& ′〉 be defined over the signature 〈Σ, Γ′, U ′〉, where Γ′ = {ε, X}, X ∉ Σ is a new

155



B. Proofs of propositions from Chapter 4

numerically tracked symbol (i.e., X ∈ Γ′X), U
′(X) = 2 and U ′(e) = U (e) for all e ∈ Σ, and

S% ′ = S% ∪ {X̂(?) = 0 | JiK%/,E ↦→? = 0} ∪ {X̂(?) ≤ ?̂ | JiK%/,E ↦→? ≠ 0},

S& ′ = S& ∪ {X̂(@) = 0 | JiK&
.,E ↦→@

= 0} ∪ {X̂(@) = @̂ | JiK&
.,E ↦→@

≠ 0}.

We may see that % ′ <ref & ′. By % <ref & , we already know that Conditions SR1–SR3 hold.
Moreover, by Condition SR4, we already have S& � S% [ref ], so we only need to show that SR4
also holds for the newly introduced linear inequalities.

If JiK%
/,E ↦→?

= 0, then X̂(?) = 0 ∈ S% ′ and
∑

〈?,@〉∈ref X̂(@) = 0 ∈ S% ′ [ref ]. By Lemma 2.30,

we have 0 = JiK%
/,E ↦→?

< JiK%
/,E ↦→?

= 0 for each 〈?, @〉 ∈ ref , which means that S& ′ � X̂(@) = 0.

Therefore, S& ′ �
∑

〈?,@〉∈ref X̂(@) =
∑

〈?,@〉∈ref 0 = 0.
If JiK%

/,E ↦→?
≠ 0, then X̂(?) ≤ ?̂ ∈ S% ′ and

∑
〈?,@〉∈ref X̂(@) ≤

∑
〈?,@〉∈ref @̂ ∈ S% ′ [ref ]. We

have S& ′ � X̂(@) ≤ @̂ for each @ ∈ O& , because either S& ′ � X̂(@) = 0 or S& ′ � X̂(@) = @̂ hold
depending on the value of JiK&

.,E ↦→@
. Therefore, S& ′ �

∑
〈?,@〉∈ref X̂(@) ≤ ∑

〈?,@〉∈ref @̂, which
completes the proof that S& ′ � S% [ref ] and % ′ <ref & ′.

Every linear inequality variable binding : : X% → ℕ with : � S% extends to a binding
: ′ : X% ′ → ℕ with : ′ � S% by setting

: ′(x) =


: (x) if x ∈ X% ,

0 if x = X̂(?) and JiK%
/,E ↦→?

= 0,

: (?̂) if x = X̂(?) and JiK%
/,E ↦→?

≠ 0,

and we also have S% ′ � S% . Therefore, S% � #½E JiK%/ < ! if and only if S% ′ � #½E JiK%
′

/
< !. After

applying the same argument as above to S& and S& ′ , we may see that it suffices to show that
S% ′ � #½E JiK%

′
/

< ! =⇒ S& ′ � #½E JiK
& ′

.
< !.

We may see that S% ′ � #[X(∗)]% ′ ≤ #½E JiK%
′

/
< ! and S& ′ � #[X(∗)]& ′

= #½E JiK
& ′

.
. By

Case (a) of Lemma 2.28, S% ′ � #[X(∗)]% ′
< ! implies S& ′ � #[X(∗)]& ′

< !. Therefore, we have
S& ′ � #½E JiK

& ′

.
< ! as required.

(ii) Similarly to (i), we extend % and & to obtain % ′ and & ′ by

S% ′ = S% ∪ {X̂(?) = ?̂ | JiK%/,E ↦→? = 1} ∪ {X̂(?) ≤ ?̂ | JiK%/,E ↦→? ≠ 1},

S& ′ = S& ∪ {X̂(@) = @̂ | JiK&
.,E ↦→@

= 1} ∪ {X̂(@) = 0 | JiK&
.,E ↦→@

≠ 1}.

We have % ′ < & ′ again, and it will suffice to show S% ′ � #1EJiK%
′

/
> * =⇒ S& ′ � #1EJiK

& ′

.
> * .

We may see that S% ′ � #[X(∗)]% ′ ≥ #1EJiK%
′

/
> ! and S& ′ � #[X(∗)]& ′

= #1EJiK
& ′

.
. By

Case (b) of Lemma 2.28, S% ′ � #[X(∗)]% ′
> * implies S& ′ � #[X(∗)]& ′

> * . Therefore, we have
S& ′ � #1EJiK

& ′

.
> * as required. 2

Lemma B.1 Let i be a logic predicate and % a regular scoped partial model. Then S% �
#1EJiK%/ ≤ #½E JiK%/ .

Proof. Consider the sets

� = {G ∈ O& | JiK&
/,E ↦→G

⇐= ½},

� = {G ∈ O& | JiK&
/,E ↦→G

= 1},

� = {G ∈ O& | JiK&
/,E ↦→G

= ½},

156



B. Proofs of propositions from Chapter 4

where � = � ∪� . Then S% �
∑{Ĝ | G ∈ �} ≥ 0 and

S% � #
1
EJiK

%
/ =

∑
{Ĝ | G ∈ �} ≤

∑
{Ĝ | G ∈ �} +

∑
{Ĝ | G ∈ �} =

∑
{Ĝ | G ∈ �} = #½E JiK

%
/ .
2

Theorem 4.6 (Backward refinement of scopes) Let i be a logic expression with free
variables + , % and & regular scoped partial models with % <ref & , / : + → O% and . : + →
O& variable binding with 〈/ (E), . (E)〉 ∈ ref for all E ∈ + , and !,* ∈ ℤ. Then the following
implications hold:

S& � #1EJiK
&

.
≥ ! =⇒ S% 2 #½E JiK%/ < !,

S& � #½E JiK
&

.
≤ * =⇒ S% 2 #1EJiK%/ > * .

Proof. We prove the proposition

S& � #
1
EJiK

&

.
≥ ! =⇒ S% 2 #

½
E JiK

%
/ < !

by contradiction. Let us assume that S% � #½E JiK%/ < !. By Theorem 4.5, we also have S& �

#½E JiK
&

.
< !. Hence, S& � #1EJiK

&

.
≤ #½E JiK

&

.
< ! by Lemma B.1. We simultaneously have

S& � ! ≤ #1EJiK
&

.
< !, which is a contradiction. S& cannot be satisfiable.

The case of

S& � #
½
E JiK

&

.
≤ * =⇒ S% 2 #

1
EJiK

%
/ > *

is analogous. After assuming S% � #1EJiK%/ > * , we get the contradiction

S& � * ≥ #½E JiK
&

.
≥ #1EJiK

&

.
> *

by applying Theorem 4.5 and Lemma B.1. 2

157





AppendixC
Proofs of propositions from Chapter 6

Proposition 6.5 Let g be the execution time of the query q on the concrete model" ,

CL = max
∑
x8 ∈X

28 · x8 subject to SIPET, DS" = max
∑
x8 ∈X

28 · x8 subject to SIPET ∪ Sflow,

where CL is the classical IPET estimate obtained from q, and DS" is the domain-specific
estimate with flow facts derived from" using Algorithm 4. Then g ≤ DS" ≤ CL.

Proof. g ≤ DS" (safety): Consider any execution path c of q. Because CL is safe, there is a
solution :c : XIPET → ℤ such that :c (f(4)) = c#4 for all edges 4 ∈ � of the CFG of q and
:c � SIPET.

Consider the linear equations in Sflow. We have a single linear equation for each basic block
bb ∈ BB. If bb is a loop header, then every execution of bb is represented by either a match ofkbb

ofk ′
bb
. Thus,

∑
4=〈=1,=2 〉∈�,tr (=1 )=bb c#4 =

∑
4=〈=1,=2 〉∈�,tr (=1 )=bb :c (f(4)) = "#kbb +"#k ′

bb
, which

means the corresponding linear equation in Sflow holds. Otherwise, every execution of bb is
represented by a match ofkbb. Thus,

∑
4=〈=1,=2 〉∈�,tr (=1 )=bb c#4 =

∑
4=〈=1,=2 〉∈�,tr (=1 )=bb :c (f(4)) =

"#kbb, which means the corresponding linear equation in Sflow holds.
Therefore, we have :c � SIPET ∪ Sflow. We also have g ≤ CL ≤ DS" using the safety of CL.
DS" ≤ CL (tightness): Assume that DS" > CL. Then there is some : � SIPET ∪ Sflow such

that 6(:) = ∑
x8 : (x8) > CL = 6(:∗), where :∗ � SIPET is the optimal solution of the classical

IPET integer program with 6(:∗) ≥ 6(: ′) for all : ′ � SIPET.
However, : � SIPET (because SIPET∪Sflow � SIPET), which means :∗ cannot be optimal. Thus

the assumption cannot hold. 2

In the following, we will use the notation d%e to refer to the extended partial model output by
Algorithm 5 for a scoped partial model % . Recall the notation b% ′c from Definition 6.7 that refers
to the projection of an extended partial model to the original signature 〈Σ, Γ, U〉, i.e., removes
the interpretations of the symbols and linear inequalities added by Algorithm 5. In particular,
we have bd%ec = % .

Lemma C.1 Let % ′, & ′ be a pair of regular extended partial models out put Algorithm 5,
and let % ′ <ref & ′ for some refinement ref . Then b% ′c <ref b& ′c.

Proof. Let % ′ = 〈O% ′,I% ′,S% ′〉, & ′ = 〈O& ′,I& ′,S& ′〉, % = b% ′c = 〈O% ′,I% ,S% 〉, and & = b& ′c =

〈O& ′,I& ,S&〉. Since the object sets O% ′ and O& ′ are unchanged by projection, % and & satisfy
both SR1 and SR2. Moreover, after removing the symbols in Σ′ \ Σ from I% ′ and I& ′ , I% ′ and I& ′

satisfying SR3 implies that I% and I& also satisfy SR3.

159



C. Proofs of propositions from Chapter 6

By SR3, : � S& ′ implies that : � S% ′ [ref ]. Due to the regularity of % ′, the substitutions∑
〈?1,@1 〉...,〈?U (e ) ,@U (e ) 〉∈ref ê (@1, . . . , @U (e ) ) under [ref ] are disjoint for distinct ê (?1, . . . , ?U (e ) ) by

Lemma 2.28. Therefore, applying Fourier–Motzkin elimination to S% ′ [ref ] is equivalent to first
applying to S% ′ to obtain S% , and then performing the substitution S% [ref ].

By the properties of Fourier–Motzkin elimination [Sch98, pp. 155-157], the systems of linear
inequalities S& ′ and S& , as well as S% ′ [ref ] and S% [ref ] are equi-satisfiable. Firstly, for any
: ′ � S& ′ (resp. : ′ � S% ′ [ref ]), we also have : ′�X&

� S& (resp. : ′�X&
� S% [ref ]), where : ′�X&

is the projection of the variable binding : ′ to the domain X& . Moreover, for any : � S&

(resp. : � S% [ref ]), there is some : ′ � S& ′ (resp. : ′ � S% ′ [ref ]) such that : ′�X&
= : .

Therefore, for any variable binding : , we have

: � S&

by F–M elimination
=⇒ : ′ � S& ′

by SR3
=⇒ : ′ � S% ′ [ref ]

by F–M elimination
=⇒ : ′�X&

= : � S% [ref ]

as required. 2

Lemma C.2 Let % ′ and T ′ be a regular extended partial model and theory, respectively,
output by Algorithm 5 for the regular scoped partial model % and theory T , and " ′ ∈
solutions(% ′,T ′). Then

a. " = b" ′c ∈ solutions(%,T);
b. " ′′ = d"e = db" ′ce <id " ′, where id is the identity relation on O" ′ = O" ′′ , i.e.,

id = {〈>, >〉 | > ∈ O" ′}; and
c. max X̂

∗ subject to S" ′ ≤ max X̂
∗ subject to S" ′′ .

Proof. Case a: Notice that T ′ was formed by adding further predicates to T but removing no
predicates or error patterns. If" ′ is concrete and compatible with T ′, then so is" concrete and
compatible with T , since the removed interpretations and inequalities do not affect concreteness
or the compatibility with the predicates and error patterns already existing in T . By % ′ < " ′

and Lemma C.1, we may also conclude that % < " as required.
Case b: Let " ′ = 〈O" ′,I" ′,S" ′〉, " = 〈O" ′,I" ′,S"〉,and " ′′ = 〈O" ′,I" ′,S" ′′〉 and

observe that id trivially satisfies SR1–SR3. To check SR4, notice that S" ′ [id] = S" ′ . Each
linear inequality in S" ′′ is already present in S" ′ : either they belong to S" , or were added to
S" ′′ (and thus to S" ′ , since" ′ itself is also an extended partial model) by Algorithm 5. Thus,
S" ′′ � S" ′ = S" ′ [id] as required.

Case c: Assume that max X̂
∗ subject to S" ′ > max X̂

∗ subject to S" ′′ , i.e., there is some : ′ �
S" ′ such that : ′(X̂∗) > : ′′(X̂∗) for all : ′′ � S" ′′ . We have S" ′ � S" ′′ by Case b, which means
that : ′ � S" ′ implies : ′ � S" ′′ . This is a contradiction: by picking : ′′ = : ′, we would have
: ′(X̂∗) > : ′(X̂∗). Therefore, we must have had max X̂

∗ subject to S" ′ ≤ max X̂
∗ subject to S" ′′

originally as required. 2

Lemma C.3 Let % , & be a pair of regular scoped partial models, and let % <ref & for some
refinement ref . Then d%e <ref d&e.

Proof. Let % = 〈O% ,I% ,S% 〉, & = 〈O& ,I& ,S&〉, % ′ = d%e = 〈O% ,I% ′,S% ′〉, and & ′ = d&e =

〈O& ,I& ′,S& ′〉. Since the object sets O% and O& are unchanged by Algorithm 5, % ′ and& ′ satisfy
both SR1 and SR2. Moreover, since we set the interpretations of the newly added Σ′ \ Σ symbols
in I% ′ and I& ′ to ½, I% and I& satisfying SR3 implies that I% ′ and I& ′ also satisfy SR3.

To see that S& ′ � S% ′ [ref ], i.e., S% ′ and S& ′ satisfy SR4, we proceed by checking each
linear inequality

[∑
x8 ∈X% ′ 08 · x8 ≤ 1

]
∈ S% ′ individually. For any linear inequality also in

S% , we may appeal to the fact that S% and S& satisfies SR4. For the inequalities of the forms∑
x8 ∈XIPET 08 · X̂x8 ≤ 1 and ℎ0CX∗ =

∑
x8 ∈XIPET 28 · X̂x8 added to S% ′ in lines 6 and 7 of Algorithm 5,

160



C. Proofs of propositions from Chapter 6

respectively, we may notice that all the symbols they refer to are of arity 0. Therefore, they are
unchanged by the refinement % < & or the substitution [ref ].

For the linear equalities of the forms∑
4=〈=1,=2 〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗)]%

′ + #[Y′
bb (∗, . . . , ∗)]

% ′
,∑

4=〈=1,=2 〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗)]%
′

added in lines 11 and 14, respectively, we only have to discuss the right sides of the equalities,
as the left sides contain only 0-ary symbols. For brevity, we only discuss the latter case (with a
single count aggregations), as the former case (with two count aggregations) is analogous. By
Lemma 2.28, the substitution [ref ] changes #[Ybb (∗, . . . , ∗)]%

′
into #[Ybb (∗, . . . , ∗)]%

′
, because

the mask ∗, . . . , ∗ is focused at the empty variable binding ∅ (omitted from the count aggregation
notation). Therefore,[∑

4=〈=1,=2 〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗)]%
′ ] ∈ S% ′

implies [∑
4=〈=1,=2 〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗)]&

′ ] ∈ S% ′ [ref ].

Since we also have[∑
4=〈=1,=2 〉∈�,tr (=1 )=bb X̂f (4 ) = #[Ybb (∗, . . . , ∗)]&

′ ] ∈ S& ′ ,

we may see that S& ′ � S% ′ [ref ] as required. 2

Lemma C.4 Let % ′ and T ′ be an extended partial model and theory, respectively, output by
Algorithm 5 for the scoped partial model % and theory T , and" ∈ solutions(%,T). Then

a. " ′ = d"e ∈ solutions(% ′,T ′); and
b. max X̂

∗ subject to S" ′ = DS" (").

Proof. Case a: Notice that" ′ is concrete and compatible with T ′, since" is also concrete and
compatible with T . By Lemma C.3 and % < " from Case a, we have % ′ < " ′. Therefore,
" ′ ∈ solutions(% ′,T ′) as required.

Case b: We will show that any variable binding :1 : XIPET → ℕ with :1 � SIPET in the
optimization problemDS" (") = max

∑
x8 28 ·x8 subject to SIPET corresponds to a variable binding

:2 : X" ′ → ℕ with :2 � S" ′ , such that
∑

xi∈XIPET 28 · :1(x8) = :2(X̂
∗), and vice versa. Therefore,

the optima of the two linear programs must be the same.
:1 ↦→ :2: Let us pick an arbitrary :3 : X" → ℕ such that :3 � S" (since " is concrete, at

least one such binding must exist). Let us define

:2(x) =



:3(x) if x ∈ X" ,

1 if x = Ŷbb (>1, . . . , >U ′ (Ybb ) ) and I" ′′ (Ybb) (1, . . . , >U ′ (Ybb ) ) = 1

or x = Ŷ
′
bb (>1, . . . , >U ′ (Y′

bb
) ) and I" ′′ (Ybb) (1, . . . , >U ′ (Ybb ) ) = 1,

0 if x = Ŷbb (>1, . . . , >U ′ (Ybb ) ) and I" ′′ (Ybb) (1, . . . , >U ′ (Ybb ) ) = 0

or x = Ŷ
′
bb (>1, . . . , >U ′ (Y′

bb
) ) and I" ′′ (Ybb) (1, . . . , >U ′ (Ybb ) ) = 0,

:1(z) if x = X̂z for some z ∈ XIPET.

Notice that we have :2 � S" ′′ : Firstly, :2 satisfies any linear inequalities from S" , because we
have :3 � S" . Moreover, :2 satisfies any inequalities added to S" ′ by Algorithm 5, since these

161



C. Proofs of propositions from Chapter 6

inequalities either correspond to some inequality from SIPET and we have :1 � SIPET, or we take
advantage of the fact that:2 � #[Ybb (∗, . . . , ∗)]"

′
= " ′#kbb and:2 � #[Y′

bb (∗, . . . , ∗)]
" ′

= " ′#k ′
bb

for any basic block or loop header bb.
:2 ↦→ :1: Let us define :1(z) = :2(X̂z) and notice that we have :1 � SIPET by an argument

similar to the one above. 2

Proposition 6.8 (Witness model) Let DS" (") be the domain-specific WCET estimate of
a query program q obtained by Algorithm 4 for a concrete model " , DS% be the domain-
specificWCET estimate of q for a regular scoped partial model % and theory T by Algorithm 5,
and "∗ be the witness model for the WCET of q, i.e., the optimal solution of DS% . Then
b"∗c ∈ solutions(%,T) and DS" (") ≤ DS" (b"∗c) = DS% for all" ∈ solutions(%,T).

Proof. b"∗c ∈ solutions(%,T): Follows immediately from Lemma C.2a.
DS" (") ≤ DS% : Since "∗ is an optimal solution of DS% , we have DS% = max:�S"∗ : (X̂

∗)
and max:�S"′ : (X̂

∗) ≤ DS% for all extended partial models " ′ ∈ solutions(% ′,T ′). In particular,
we may pick" ′ = d"e by Lemma C.4a. By Lemma C.4b, DS" (") = max:�Sd"e : (X̂

∗) ≤ DS% .
DS" ("∗) = DS% : Assume the contrary, i.e., DS" (b"∗c) < DS% . By Lemma C.4b and

Lemma C.2c, we have

DS% = max X̂
∗ subject to S"∗ ≤ max X̂

∗ subject to Sd b"∗ c e = DS" (b"∗c) < DS% .

This is a contradiction, we must have had DS" ("∗) = DS% originally as required. 2

Proposition 6.6 (Safety and tightness) Let g (") be the execution time of a query pro-
gram q on a concrete model" , % be regular scoped partial model, T be a theory, and

CL = max
∑
x8 ∈X

28 · x8 subject to SIPET, DS% = maxX∗ subject to 〈% ′,T ′〉,

where CL is the classical IPET estimated obtained from q, and DS% is the domain-specific
estimate based on the extended graph generation problem form Algorithm 5. Then g (") ≤
DS% ≤ CL for all" ∈ solutions(%,T).

Proof. By Proposition 6.8, we have DS" (") ≤ DS% = DS" ("∗) for all< ∈ solutions(?,t). By
applying Proposition 6.5 to any" ∈ solutions(%,T), we have g (") ≤ DS" ("), and by applying
it to "∗ in particular, we have DS" ("∗) ≤ CL. This completes the proof g (") ≤ DS" (") ≤
DS% = DS" ("∗) ≤ CL. 2

Proposition 6.9 (Tightening by refinement) Let DS% (%,T) denote the domain-specific
WCET estimate of a query program q for a regular scoped partial model % and theory
T obtained by Algorithm 5 and % < & for some regular scoped partial model & . Then
DS% (&,T) ≤ DS% (%,T). In particular, if % = %init is the initial partial model for a metamodel
〈Σ, Γ, U〉 from Section 4.2.2, then we may see that the WCET estimate for any partial model
conforming to the metamodel is at least as tight as the DSΣ estimate for the metamodel.

Proof. Assume that DS% (&,T) > DS% (%,T). Let"∗ and # ∗ be the witness models correspond-
ing toDS% (&,T) andDS% (%,T), respectively, and notice that we have % < & < b# ∗c. Therefore,
by Proposition 6.8, we have

DS" (b# ∗c) ≤ DS" (b"∗c) = DS% (%,T) < DS% (&,T) = DS" (b# ∗c),

which is a contradiction. We must have had DS% (&,T) ≤ DS% (%,T) originally as required. 2

162


	Declaration of own work and references
	Nyilatkozat önálló munkáról, hivatkozások átvételéről (in Hungarian)
	Acknowledgements
	Köszönetnyilvánítás (in Hungarian)
	Summary
	Összefoglaló (in Hungarian)
	Contents
	1 Introduction
	1.1 Cyber-Physical Systems
	1.2 Background and challenges
	1.3 Research method
	1.4 Contribution overview

	2 Formalisms for partial models
	2.1 Modelling and metamodels
	2.2 4-valued partial models with attributes
	2.3 Scoped partial models
	2.4 Related work
	2.5 Conclusions

	3 Fully compositional view transformations
	3.1 An overview of compositional view transformations
	3.2 Modelling and partial models
	3.3 View model transformations
	3.4 Evaluation
	3.5 Related work
	3.6 Conclusions

	4 Multiplicity reasoning for consistent graph model generation
	4.1 Models and partial models
	4.2 Model generation with scope reasoning
	4.3 Evaluation
	4.4 Related work
	4.5 Conclusions

	5 Creating phased-mission models by view transformations
	5.1 Preliminaries
	5.2 Automated analysis model construction
	5.3 Mission automata
	5.4 Phased-mission analysis
	5.5 Evaluation
	5.6 Related work
	5.7 Conclusions

	6 Worst-Case Execution Time calculation for query-based monitors
	6.1 Query-based runtime monitors
	6.2 Formal background
	6.3 Timing analysis of query-based monitors
	6.4 Evaluation
	6.5 Related work
	6.6 Conclusions

	7 Summary of contributions
	7.1 Partial modeling for quantitative extra-functional analysis
	7.2 Reasoning with partial models
	7.3 Model-based quantitative extra-functional analysis
	7.4 Future work

	Publications
	References
	A Proofs of propositions from Chapter 2
	A.1 4-valued partial models
	A.2 Scoped partial models

	B Proofs of propositions from Chapter 4
	C Proofs of propositions from Chapter 6

